Skip to main content

Main menu

  • IWA Publishing
    • About IWA Publishing
  • Subscribe
    • Institutional Subscriptions
    • User Licences
    • IP Registration
    • IWA Member Subscriptions
  • Open Access
  • For Authors
    • Publish with Us
    • Instructions for Authors
    • Open Access
    • How to review a paper
    • Rights & Permissions
    • Article Promotion
    • Peerwith
  • For Librarians
    • Usage Statistics
    • Subscriber Services
    • Terms and Conditions
  • For Readers
    • Recommend to Your Library
    • Rights & Permissions
  • Collections
  • Help
    • FAQ
    • Contact Us
  • List of Publications
    • IWAP Online
    • Journal of Hydroinformatics
    • Journal of Water and Health
    • Journal of Water and Climate Change
    • Journal of Water Reuse and Desalination
    • Journal of Water Supply: Research and Technology-AQUA
    • H2Open Journal
    • Hydrology Research
    • Water Practice and Technology
    • Water Research
    • Water Policy
    • Water Quality Research Journal
    • Water Science and Technology
    • Water Science and Technology: Water Supply
    • Journal of Water Sanitation and Hygiene for Development
    • Water Intelligence Online
    • Ingeniería del agua
    • IWA Publishing

User menu

  • Log-in
  • Sign-up for alerts

Search

  • Advanced search
  • List of Publications
    • IWAP Online
    • Journal of Hydroinformatics
    • Journal of Water and Health
    • Journal of Water and Climate Change
    • Journal of Water Reuse and Desalination
    • Journal of Water Supply: Research and Technology-AQUA
    • H2Open Journal
    • Hydrology Research
    • Water Practice and Technology
    • Water Research
    • Water Policy
    • Water Quality Research Journal
    • Water Science and Technology
    • Water Science and Technology: Water Supply
    • Journal of Water Sanitation and Hygiene for Development
    • Water Intelligence Online
    • Ingeniería del agua
    • IWA Publishing

Log-in

   

IWAP Online

IWAPonline.com IWAPublishing.com IWA-network.org 

Search All Publications
  • IWA Publishing
    • About IWA Publishing
  • Subscribe
    • Institutional Subscriptions
    • User Licences
    • IP Registration
    • IWA Member Subscriptions
  • Open Access
  • For Authors
    • Publish with Us
    • Instructions for Authors
    • Open Access
    • How to review a paper
    • Rights & Permissions
    • Article Promotion
    • Peerwith
  • For Librarians
    • Usage Statistics
    • Subscriber Services
    • Terms and Conditions
  • For Readers
    • Recommend to Your Library
    • Rights & Permissions
  • Collections
  • Help
    • FAQ
    • Contact Us

Selective adsorption on fibrous activated carbon of organics from aqueous solution: correlation between adsorption and molecular structure

Catherine Brasquet, Etienne Subrenat, Pierre Le Cloirec
Published April 1997, 35 (7) 251-259; DOI:
Catherine Brasquet
Ecole des Mines de Nantes, Subatech, UMR no 6457, BP 20722, 4 rue Alfred Kastler, 44307 Nantes Cedex 3, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Etienne Subrenat
Actitex, 16 rue Trézel, 92300 Levallois Cedex, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Le Cloirec
Ecole des Mines de Nantes, Subatech, UMR no 6457, BP 20722, 4 rue Alfred Kastler, 44307 Nantes Cedex 3, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

In industrial processes, granular activated carbon (GAC) is generally used to remove pollutants from wastewater. Recently, a new adsorbant has been explored, fibrous activated carbon (FAC). Experiments were carried out with two FACs having different specific surface areas (1500 and 1300 m2.g−1) and pore-size distributions to study adsorption of various organic compounds from aqueous solution. Results were compared with adsorption onto one GAC with a specific surface area of about 1000 m2.g−1. Classic models were applied and kinetic constants were computed. In most cases, FAC with the higher specific surface area (named CS 1501) showed better adsorption capacities and kinetics than the two other FACs. For example, adsorption velocity of benzaldehyde was 7.2 ξ 10−5 1.mg−1·min−1 with CS 1501 and about 3 ξ 10−5 1.mg−1.min−1 with other FACs. Furthermore, adsorption onto CS 1501 of a great number of organic compounds (aliphatic and aromatic) depended on solute molecular characteristics. For instance, solute molecular size seemed to play an important role: adsorption capacity of high molecular weight compounds (humic substances) was about 3 mg.g−1, a value much lower than those of low molecular weight compounds, which were respectively 200 mg.g−1 and 400 mg.g−1 for phenol and benzoic acid. From experimental results, a correlation of QSAR (Quantitative Structure-Activity Relationship) type has been set up. This relationship predicts the adsorbability of organics compounds onto fibrous activated carbon from the molecular properties of these compounds.

  • Adsorption
  • fibrous activated carbon
  • humic substances
  • organic micropollutants
  • molecular connectivity indexes
  • QSAR
  • selectivity
  • water treatment
  • © IWA Publishing 1997
Previous ArticleNext Article
Back to top

JBJS

Current Issue:
  Volume 77, Issue 7

  Table of Contents
  Uncorrected Proofs
  Browse Archive

  ISSN : 0273-1223

Actions

Email

Thank you for your interest in spreading the word on IWAP Online.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Selective adsorption on fibrous activated carbon of organics from aqueous solution: correlation between adsorption and molecular structure
(Your Name) has sent you a message from IWAP Online
(Your Name) thought you would like to see the IWAP Online web site.
Share
Selective adsorption on fibrous activated carbon of organics from aqueous solution: correlation between adsorption and molecular structure
Catherine Brasquet, Etienne Subrenat, Pierre Le Cloirec
Water Science and Technology Apr 1997, 35 (7) 251-259;
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Citation Tools
Selective adsorption on fibrous activated carbon of organics from aqueous solution: correlation between adsorption and molecular structure
Catherine Brasquet, Etienne Subrenat, Pierre Le Cloirec
Water Science and Technology Apr 1997, 35 (7) 251-259;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

View Full PDF

Save to my folders
Alerts

Please log in to add an alert for this article.

  • Tweet Widget
  • Facebook Like

Jump to

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Dynamic simulation of water resources in an urban wetland based on coupled water quantity and water quality models
  • Use of the ferrates (FeIV–VI) in combination with hydrogen peroxide for rapid and effective remediation of water – laboratory and pilot study
  • Cultivation of an Arthrospira platensis with digested piggery wastewater
Show more Research Articles

Similar Articles

Keywords

adsorption
fibrous activated carbon
humic substances
Organic micropollutants
molecular connectivity indexes
QSAR
selectivity
water treatment
  • Feedback
  • About IWA Publishing
  • Open Access

IWA Publishing
Alliance House
12, Caxton Street
London SW1H 0QS, UK

Tel: +44 (0)20 7654 5500
Fax: +44 (0)20 7654 5555
Remove (0) if calling from outside the UK
iwapublishing.com
Company registered in England no. 3690822

© IWA Publishing | Cookies | Terms & Conditions | Privacy | Site Map