El fenómeno del golpe de ariete es conocido desde el siglo XIX y su formulación matemática, en término de ecuaciones diferenciales, se debe a los trabajos de Allievi (1902) y otros investigadores del principio del siglo XX. Las ecuaciones presentes en la literatura técnica actual generan un fenómeno anómalo de golpe de ariete cuando el escurrimiento se encuentra en régimen permanente y no se introducen perturbaciones. En el presente trabajo se realiza una lectura crítica de la deducción presente en la literatura señalando las inconsistencias conceptuales. Luego se propone una nueva deducción y un conjunto de ecuaciones diferenciales que articulan consistentemente los conceptos de la mecánica de los fluidos y resuelven la anomalía detectada.

The water hammer phenomenon is well known since the 19th century, while its mathematical formulation, by means of differential equations, is due to works of researchers such us Allievi (1903) and others from the beginning of the 20th century. The equations found in the technical publications produce a strange water hammer when the initial condition is defined assuming an incompressible fluid and a rigid pipe. The correct solution requires solving the water hammer equations for the initial state. When the finite difference method is applied, the initial state is solved by means of a set of non-linear equations. A novel approach is proposed including the initial state of pressurization into the governing equations and hence simplifying the calculus of the initial conditions. Furthermore, a critical reading of the deduction of the equations is done pointing out conceptual inconsistencies and proposing corrections.
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/)