This study demonstrates the transport characteristics of wastewater effluent organic matter (EfOM) through membrane pores using a four-parameter (intrinsic mass transfer coefficient (ki), solute concentration near the membrane surface (Cm), solute permeability (Pm), and reflection coefficient (σ) model based on thermodynamics, concentration polarization (CP) and hydrodynamic operating conditions represented by a J0/k ratio (the ratio of initial permeate flux (J0) to a back diffusional mass transfer coefficient (k)). EfOM transport characteristics through the pores of four different membranes (a nanofiltration (NF)/ultrafiltration (UF) polymeric pair and two ceramic UF membranes with different molecular weight cutoffs (MWCOs)) were different; the NF polymeric membrane exhibited either convection- or diffusion-dominant conditions, while the UF membranes exhibited convection-dominant conditions in terms of EfOM transport through membrane pores. A critical J0/k ratio (representing a transitional condition between diffusion- and convection-dominant transport of solute) was found for the examined NF membrane with a MWCO of 250 Daltons. Four different parameters (ki, Cm, Pm, and σ) were determined by the model to be informative to elucidate the various interactions between EfOM and the tested membranes. EfOM characteristics (size, structure, and functionality) and membrane properties (MWCO, surface/pore charge in terms of zeta potential, and module configurations) were revealed to play a major role in EfOM rejection and flux decline under convection-dominant conditions, as compared to diffusion-dominant conditions.
Skip Nav Destination
Article navigation
March 2003
This article was originally published in
Journal of Water Supply: Research and Technology-Aqua
Article Contents
Research Article|
March 01 2003
Transport characteristics of wastewater effluent organic matter in nanofiltration and ultrafiltration membranes
Sangyoup Lee;
Sangyoup Lee
1Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Korea
Search for other works by this author on:
Young-Gwan Cho;
2Water Quality Research Institute of Waterworks, Gwangju, Korea
Tel: 82-62-970-2443 Fax: 82-62-970-2434; E-mail: [email protected]
Search for other works by this author on:
Yangseok Song;
Yangseok Song
2Water Quality Research Institute of Waterworks, Gwangju, Korea
Search for other works by this author on:
In S. Kim;
In S. Kim
1Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Korea
Search for other works by this author on:
Jaeweon Cho
Jaeweon Cho
1Department of Environmental Science and Engineering, Kwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Korea
Search for other works by this author on:
Journal of Water Supply: Research and Technology-Aqua (2003) 52 (2): 129–139.
Citation
Sangyoup Lee, Young-Gwan Cho, Yangseok Song, In S. Kim, Jaeweon Cho; Transport characteristics of wastewater effluent organic matter in nanofiltration and ultrafiltration membranes. Journal of Water Supply: Research and Technology-Aqua 1 March 2003; 52 (2): 129–139. doi: https://doi.org/10.2166/aqua.2003.0013
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00