Micro-irrigation with treated wastewater has the potential to be the most efficient irrigation technique, especially in water scarce areas. Its main disadvantage is the high sensitivity of the drippers to clog. This study focused only on the chemical precipitation mechanisms. In a batch chemical process in parallel with PHREEQC software, two temperatures (22 and 55°C), four pHs (8, 8.5, 9 and 9.5) and CO2 partial pressure were tested. The aim was to analyze the quantity of precipitates and their crystalline nature and calculate the effects of these factors on the behavior of dissolved chemical elements in treated wastewater to be able to validate and calibrate a geochemical software in order to predict chemical precipitation. The amount of precipitate increases by increasing pH and temperature. Precipitates were analyzed using thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Calcium carbonate (CaCO3) in the form of calcite was found to be the predominant precipitate. Experimental and model results showed that the saturation index (SI) of calcite was found to be the factor that most frequently affected calcite precipitation. Calcite SI is pH, temperature and CO2 partial pressure dependent. In the case of irrigation, water equilibrium with atmospheric CO2 minimizes precipitation of calcite.

You do not currently have access to this content.