Abstract
Pressure management (PM) in a water distribution system (WDS) can be accomplished by setting the pressure to be low and constant at remote consumer locations, through the use of a controller. The controller adjusts the speed of a variable speed pump (VSP) in real time. To study the implementation of these concepts, the installation of a VSP for PM in a real-world WDS in South Africa is investigated with a hydraulic model, to show how this can assist in addressing challenges and to determine the adequacy of various controllers. In this study, a suitable pump is installed which is sized to supply the required set pressure at maximum demand. Previously existing pressure deficiency challenges are solved. PM with recently proposed controllers, which depend on hydraulics theory, is performed for the first time for a WDS which exists in the real world. Since these controllers need to be studied under realistic conditions, stochastic water consumption is used. All controllers, including conventional proportional control, perform well. A consequence of this is that a controller without a tunable parameter can initially be used safely, and a related controller can then be tuned slowly to improve performance. Criteria for selecting an appropriate controller are given.