Abstract

This paper explored and compared the effectiveness of the inline and branching redesign strategies-based dual technique, implemented to enhance the conventional technique skills in term of attenuation of positive and negative pressure surge magnitudes and limitation of the spreading of pressure wave oscillation period. Basically, this technique is based on splitting the single inline or branched plastic short-section, used in the conventional technique, into a couple of two sub-short-sections made of two distinct plastic material types. Investigations addressed positive and negative surge initiated water hammer events. Additionally, high and low density polyethylene materials were utilized for sub-short-section material. Results illustrated the reliability of the dual technique in protecting hydraulic systems from excessive pressure rise and drop, and evidenced that the (HDPE/LDPE) sub-short-sections' combination (where the former sub-short-section is attached to the sensitive region of the steel piping system parts, while the latter is attached to the second extremity of the steel piping system) is the most prominent configuration providing the best trade-off between pressure surge attenuation, and pressure wave oscillation period spreading. Lastly, it was found that the pressure head peak (or crest) and the pressure wave oscillation period values were markedly sensitive to the (HDPE) sub-short-section length and diameter.

This content is only available as a PDF.
You do not currently have access to this content.