The aim of this study was to determine the corrosion and scaling potential of water supply sources in a province in eastern Iran. In this cross-sectional study, 879 samples were taken to evaluate the water quality characteristics during 12 months (2013–2014). Five indices, Langelier, Ryznar, Puckorius, Larson–Skold, and Aggressiveness, were programmed in Microsoft Excel. The results illustrated that the values of the Langelier saturation index, Ryznar stability index, Puckorius scaling index, Larson ratio, and Aggressiveness index were 0.33 (±0.17), 7.36 (±0.37), 7.4 (±0.6), 2.1 (±1.4), and 12.03 (±0.18), respectively. According to the Ryznar index (RSI), the index for the water resources of Torbat city was 6.99 and RSI for the central part of Gonabad was 6.4 (consolidation grade). The average pH in the studied water wells was 8.03. The amounts of turbidity, calcium, magnesium, nitrate, and fluoride in the study areas have favorable and acceptable conditions. However, the values of sulfate, total dissolved solids, and chloride in a few cities were higher than the standards. Comparison of five stability indices demonstrated that water in some parts of the study area is corrosive. Based on the results, selecting the best method to prevent the corrosion process is required.

INTRODUCTION

Sustainable development of social and economic conditions throughout the world depends on the availability of water resources. Water with appropriate quality and quantity is required for the development of industrial, agricultural, and household activities (Aslam et al. 2016; Mirzabeygi et al. 2016; Swan et al. 2016). As a major result of population growth, water demand for domestic as well as agricultural and industrial consumption is dramatically increasing. This has caused excessive use of groundwater resources as the main water supply (Nouri et al. 2006; 2008; Gharibi et al. 2012; Shirmardi et al. 2012). Since there is a possibility of heavy metal and organic pollution in groundwater, proper methods should be applied for removal of pollutants (Mahvi et al. 2008; Maleki et al. 2011; Bazrafshan et al. 2012). Chemical quality of groundwater depends on many factors, such as the composition of precipitation, the geological structure, the mineralogy of the watersheds and the aquifers. From hygienic and economic points of view, these factors play an important role in corrosion and scaling in water supply utilities (Smith et al. 1999; Hayes et al. 2016). Corrosion is a physicochemical process which occurs between a substance and its surroundings and results in changing the properties of materials (Long 1994). Pitting in pipes, reducing the lifetime of facilities, and loss of water are consequences of the corrosion characteristics of water (Wang et al. 2015). According to some studies, damage related to the corrosion process in countries such as Japan, America, Great Britain, Australia, and several other countries was several times higher than their gross domestic product. In addition, the most important health problems related to corrosion are the presence of heavy metals like lead, copper, zinc, and arsenic in drinking water (Edmunds et al. 2015). The most important factors which can effect the corrosion rate include pH, temperature, hardness, alkalinity, residual chlorine, total dissolved solids (TDS), gases, dissolved salts, and microorganisms in water. Scaling is a process in which divalent cations such as calcium and magnesium react with other water-soluble substances and form a thin layer in the inner walls of water pipe lines (Mirzabeygi et al. 2016; Sorlini et al. 2016). The most common scaling layers are made of calcium carbonate. The scaling process can cause problems such as blocked tubes, reduction of the water discharge and the water pressure in the distribution network as well as increasing the operation and maintenance costs (Sun et al. 2014).

Various indices have been used for determining calcium carbonate saturation. Langelier index, Ryznar, Aggressiveness, Puckorius, Larson–Skold, driving force, excess moment and the saturation level of index are the most common indicators used to determine the scaling or corrosiveness of water (Swan et al. 2016). Mathematical formulae for determining the potential sustainability of water have been developed. The first method for predicting the corrosion or deposition of water was conducted by Langelier (1936). The Ryznar index determines the severity of corrosion in water pipelines. According to the Ryznar index, when the value of the index is less than 7, calcium carbonate is deposited on the pipe wall and when the value of the index is higher than 7, there is no deposition on the wall (Ryznar 1944). The buffer capacity of water and the maximum amount of natural deposited water are generally ignored for calculation of the depositing and corrosiveness of water. The Puckorius index presents the relationship between the state of saturated water and scaling. The Larson–Skold index assesses the corrosiveness of water in the presence of steel pipes with low-carbon steel and cast-iron pipes (Larson & Skold 1958). The Invasion scale index is concerned with the water tendency to damage pipes. It was developed according to a request of American consulting engineers to choose a type of asbestos-cement pipe and ensuring the durable structural of pipes at temperatures between 4 and 27 °C (American Water Works Association 1995).

MATERIAL AND METHODS

Study area

Khorasan-e-Razavi province with an area of 118,854 square kilometers, is located in the northeastern part of Iran. Khorasan-e-Razavi has a population of over 5,994,402 inhabitants and consists of 28 cities, 46 districts, and 156 villages. This province is located between longitude of 33° 52′ to 37° 42′ N and latitude 56° 16′ to 61° 16′ E. The province is characterized by a semi-arid climate, average rainfall of 210 mm, and an annual average temperature of 15.6 °C. Regarding the geographical, geological situation and low rainfall in the region, the main source of water in this area is underground water and the major part of the water is provided through deep and semi-deep wells. The aim of this study is to investigate the physical and chemical characteristics of the water and examine the corrosiveness or scaling tendency of water in rural areas of Khorasan-e- Razavi province, according to Langelier, Ryznar, Puckorius, Larson–Skold, and Aggressiveness indices.

Materials and methods

In this cross-sectional study, 879 rural drinking water sources in Khorasan-e-Razavi were analyzed during 12 months (2013–2014) according to physical and chemical parameters. Figure 1 shows the studied area and sampling locations in this study. Samples were collected in polythene bottles (1 L) and then transported to the central laboratory of the water and wastewater company. Groundwater samples were transported to the laboratory on the same day and kept at 4 °C. All water samples were analyzed according to Standard Methods for the Examination of Water and Wastewater (Rice et al. 2012). Temporary and permanent hardness, magnesium, calcium, and chloride were measured by titration method. The hydrogen ion concentration (pH) and electrical conductivity and opacity were analyzed with pH meter (model wtw, Esimetrwb) and turbidity meter (model Hach 50161/co 150 model P2100Hach, USA), respectively. Also, fluoride, nitrate, and sulfate were determined with Hach DR5000 spectrophotometer and compared with internal standards. Then, the Langelier saturation index (LSI), Ryznar saturation index (RSI), Aggressiveness index (AI), Larson–Skold index, and Puckorius scaling index (PSI) were calculated and the results divided into three categories: depositing, stabilized, and corrosive. Table 1 presents the indices, equations and some definitions and criteria for categorizing the stability of the water. Finally, the severity of corrosion in different water supply systems of Khorasan-e-Razavi province was displayed using a geographic information system (GIS). All analyses were done using Excel 2010 and Arc GIS 10.3 software. In addition, according to the results, a Piper triangular diagram for the water samples in the study area was plotted to assess the hydrochemistry of the groundwater.
Table 1

Indicators used in the study for Khorasan-e-Razavi province (eastern Iran)

Index Equation Index value Water condition 
Langelier saturation index (LSI) LSI = pH − pHs LSI > 0 Super saturated, tend to precipitate CaCO3 
  LSI = 0 Saturated, CaCO3 is in equilibrium 
  LSi < 0 Under saturated, tend to dissolve solid CaCO3 
Ryznar stability index (RSI) RSI = pHs2 − pH RSI < 6 Super saturated, tend to precipitate CaCO3 
  6 < RSI < 7 Saturated, CaCO3 is in equilibrium 
  RSI > 7 Under saturated, tend to dissolve solid CaCO3 
Puckorius scaling index (PSI) PSI = 2 (pHeq) − pHs PSI < 6 Scaling is unlikely to occur 
 pH = 1.465 + log (T.ALK) + 4.54 PSI > 7 Likely to dissolve scale 
 pHeq = 1.465 × log (T.ALK) + 4.54   
Larson–Skold index (LS) Ls = (cl + SO42−)/(HCO3 + CO32−LS < 0.08 Chloride and sulfate are unlikely to interfere with the formation of protecting film 
  0.8 < LS > 1.2 Corrosion rates may be higher than expected 
  LS > 1.2 High rates of localized corrosion may be expected 
Aggressiveness index (AI) AI = pH + log[(alk) (H)] AI > 12 Non-aggressive 
  10 > AI < 12 Moderately aggressive 
  AI < 10 Very aggressive 
Index Equation Index value Water condition 
Langelier saturation index (LSI) LSI = pH − pHs LSI > 0 Super saturated, tend to precipitate CaCO3 
  LSI = 0 Saturated, CaCO3 is in equilibrium 
  LSi < 0 Under saturated, tend to dissolve solid CaCO3 
Ryznar stability index (RSI) RSI = pHs2 − pH RSI < 6 Super saturated, tend to precipitate CaCO3 
  6 < RSI < 7 Saturated, CaCO3 is in equilibrium 
  RSI > 7 Under saturated, tend to dissolve solid CaCO3 
Puckorius scaling index (PSI) PSI = 2 (pHeq) − pHs PSI < 6 Scaling is unlikely to occur 
 pH = 1.465 + log (T.ALK) + 4.54 PSI > 7 Likely to dissolve scale 
 pHeq = 1.465 × log (T.ALK) + 4.54   
Larson–Skold index (LS) Ls = (cl + SO42−)/(HCO3 + CO32−LS < 0.08 Chloride and sulfate are unlikely to interfere with the formation of protecting film 
  0.8 < LS > 1.2 Corrosion rates may be higher than expected 
  LS > 1.2 High rates of localized corrosion may be expected 
Aggressiveness index (AI) AI = pH + log[(alk) (H)] AI > 12 Non-aggressive 
  10 > AI < 12 Moderately aggressive 
  AI < 10 Very aggressive 
Figure 1

Location of studied area in the IR. Iran and Khorasan-e-Razavi province.

Figure 1

Location of studied area in the IR. Iran and Khorasan-e-Razavi province.

RESULTS

The results of physicochemical parameters of water are presented in Tables 2 and 3. The average concentrations of calcium, magnesium, and fluoride are 53 (±22.7), 22.7 (±13.6), and 0.57 (±0.23) mg/L, respectively, which are in the range of acceptable levels. According to these values, Langelier, Ryznar, Aggressive, Larson–Skold, and Puckorius indices for the water resources situation in the villages of Khorasan-e-Razavi province were determined. Table 4 illustrates the calculations related to these indices. According to the results obtained, most of the water resources were corrosive and the values of LSI, RSI, PSI, Larson ratio, and AI were 0.33 (±0.17), 7.36 (±0.37), 7.4 (±0.6), 2.1 (±1.4), and 12.03 (±0.18), respectively.

Table 2

The mean values of cations and anions in the water samples

City Region HCO3  NO3 SO42− Cl F K+ Na+ Mg2+ Ca2+ 
Bakharz Balavelait 288 ± 127 23 ± 21 232 ± 162 123 ± 127 0.4 ± 0.2 1.6 ± 0.8 214 ± 130 30 ± 21 66 ± 29 
 Malin 312 ± 71 21 ± 4 499 ± 142 174 ± 70 0.7 ± 0.2 3.5 ± 0.9 311 ± 15 47 ± 11 97 ± 43 
 Markazi 285 ± 45 23 ± 19 298 ± 399 136 ± 205 0.5 ± 0.3 2.5 ± 2 269 ± 9 41 ± 34 82 ± 41 
Bajestan Markazi 217 ± 40 28 ± 15 405 ± 271 417 ± 480 0.8 ± 0.6 1.5 ± 0.6 454 ± 370 17 ± 13 64 ± 37 
 Yonsei 208 ± 26 27 ± 3 415 ± 32 874 ± 590 0.8 ± 0.08 1.7 ± 0.3 770 ± 320 19 ± 10 66 ± 30 
Bardaskan Markazi 287 ± 100 18 ± 11 105 ± 41 59 ± 29 0.5 ± 0.1 1.1 ± 0.5 119 ± 38 17 ± 8 43 ± 22 
 Shahrabad 194 ± 40 7 ± 2 177 ± 46 91 ± 17 0.6 ± 0.1 1.4 ± 0.2 428 ± 640 11 ± 3 14 ± 2 
 Anabd 279 ± 88 21 ± 22 302 ± 181 265 ± 218 0.6 ± 0.2 2.1 ± 1.4 336 ± 196 30 ± 28 43 ± 32 
Taibad Markazi 226 ± 25 18 ± 7 247 ± 226 154 ± 154 0.7 ± 0.4 2.2 ± 1 189 ± 199 24 ± 10 70 ± 25 
 Mian velait 232 ± 49 25 ± 13 260 ± 207 175 ± 202 0.6 ± 0.3 2.5 ± 1 200 ± 166 31 ± 20 85 ± 36 
Torbat Heydariye Markazi 244 ± 69 17 ± 11 179 ± 152 319 ± 285 0.5 ± 0.2 3.6 ± 3.5 286 ± 236 24 ± 25 59 ± 37 
 Jolge rokh 208 ± 66 16 ± 6 223 ± 134 184 ± 120 0.4 ± 0.1 1.4 ± 0.9 203 ± 87 37 ± 25 26 ± 13 
 Bayg 346 ± 77 21 ± 24 79 ± 64 67 ± 58 0.3 ± 0.1 1.3 ± 0.6 86 ± 61 26 ± 8 84 ± 41 
 Kadkan 228 ± 90 9 ± 5 218 ± 135 147 ± 124 0.4 ± 0.2 1.6 ± 1.6 171 ± 145 28 ± 17 54 ± 43 
Khalil Abad Sheshteraz 147 ± 26 6 ± 1.3 125 ± 28 70 ± 47 0.5 ± 0.1 1.4 ± 0.9 116 ± 38 7 ± 3 17 ± 7 
 Markazi 149 ± 19 6 ± 2 137 ± 21 77 ± 65 0.6 ± 0.1 1.2 ± 0.3 140 ± 20 6 ± 2 21 ± 15 
Khaf Markazi 259 ± 50 15 ± 6 442 ± 360 240 ± 158 0.8 ± 0.7 1.9 ± 0.9 361 ± 229 32 ± 23 51 ± 32 
 Salami 212 ± 41 7 ± 6 144 ± 75 48 ± 32 0.3 ± 0.1 1.9 ± 0.6 75 ± 43 26 ± 13 56 ± 26 
 Sangan 209 ± 17 12 ± 2 377 ± 158 458 ± 226 1 ± 0.4 1.5 ± 0.4 484 ± 221 21 ± 6 34 ± 8 
 Jolge zozan 267 ± 77 35 ± 18 706 ± 895 492 ± 395 1.4 ± 1 1.5 ± 0.8 556 ± 306 14 ± 9 56 ± 50 
Roshtkhar Markazi 267 ± 77 17 ± 11 219 ± 75 190 ± 96 0.6 ± 0.2 2.1 ± 0.8 281 ± 80 18 ± 13 37 ± 17 
 Jangal 351 ± 52 13 ± 3 392 ± 152 422 ± 246 0.6 ± 0.1 3.5 ± 0.5 462 ± 185 53 ± 9 39 ± 13 
Zaveh Markazi 280 ± 58 12 ± 1.5 210 ± 152 113 ± 151 0.4 ± 0.1 1.1 ± 0.6 150 ± 141 47 ± 18 37 ± 20 
 Jolge zaveh 263 ± 95 20 ± 15 138 ± 150 95 ± 107 0.3 ± 0.2 1.2 ± 0.8 123 ± 110 30 ± 19 48 ± 26 
Kashmar Markazi 187 ± 35 14 ± 8 121 ± 62 73 ± 87 0.5 ± 0.1 1.4 ± 0.5 96 ± 79 14 ± 6 51 ± 24 
 Kohsorkh 293 ± 104 17 ± 19 152 ± 143 95 ± 111 0.3 ± 0.1 1.1 ± 0.6 151 ± 107 23 ± 15 56 ± 38 
Gonabad Markazi 320 ± 109 31 ± 17 614 ± 439 501 ± 303 0.6 ± 0.2 2.6 ± 1.2 515 ± 284 60 ± 35 108 ± 66 
 Kakhk 265 ± 76 22 ± 17 258 ± 211 260 ± 257 0.5 ± 0.3 2.1 ± 1.4 237 ± 207 46 ± 52 51 ± 20 
Mahvelat Markazi 176 ± 14 20 ± 4 373 ± 138 280 ± 60 0.6 ± 0.1 1.5 ± 0.5 342 ± 50 25 ± 5 40 ± 10 
 Shadmehr 204 ± 49 18 ± 7 170 ± 135 79 ± 84 0.4 ± 0.1 1.3 ± 0.4 149 ± 97 13 ± 8 36 ± 22 
City Region HCO3  NO3 SO42− Cl F K+ Na+ Mg2+ Ca2+ 
Bakharz Balavelait 288 ± 127 23 ± 21 232 ± 162 123 ± 127 0.4 ± 0.2 1.6 ± 0.8 214 ± 130 30 ± 21 66 ± 29 
 Malin 312 ± 71 21 ± 4 499 ± 142 174 ± 70 0.7 ± 0.2 3.5 ± 0.9 311 ± 15 47 ± 11 97 ± 43 
 Markazi 285 ± 45 23 ± 19 298 ± 399 136 ± 205 0.5 ± 0.3 2.5 ± 2 269 ± 9 41 ± 34 82 ± 41 
Bajestan Markazi 217 ± 40 28 ± 15 405 ± 271 417 ± 480 0.8 ± 0.6 1.5 ± 0.6 454 ± 370 17 ± 13 64 ± 37 
 Yonsei 208 ± 26 27 ± 3 415 ± 32 874 ± 590 0.8 ± 0.08 1.7 ± 0.3 770 ± 320 19 ± 10 66 ± 30 
Bardaskan Markazi 287 ± 100 18 ± 11 105 ± 41 59 ± 29 0.5 ± 0.1 1.1 ± 0.5 119 ± 38 17 ± 8 43 ± 22 
 Shahrabad 194 ± 40 7 ± 2 177 ± 46 91 ± 17 0.6 ± 0.1 1.4 ± 0.2 428 ± 640 11 ± 3 14 ± 2 
 Anabd 279 ± 88 21 ± 22 302 ± 181 265 ± 218 0.6 ± 0.2 2.1 ± 1.4 336 ± 196 30 ± 28 43 ± 32 
Taibad Markazi 226 ± 25 18 ± 7 247 ± 226 154 ± 154 0.7 ± 0.4 2.2 ± 1 189 ± 199 24 ± 10 70 ± 25 
 Mian velait 232 ± 49 25 ± 13 260 ± 207 175 ± 202 0.6 ± 0.3 2.5 ± 1 200 ± 166 31 ± 20 85 ± 36 
Torbat Heydariye Markazi 244 ± 69 17 ± 11 179 ± 152 319 ± 285 0.5 ± 0.2 3.6 ± 3.5 286 ± 236 24 ± 25 59 ± 37 
 Jolge rokh 208 ± 66 16 ± 6 223 ± 134 184 ± 120 0.4 ± 0.1 1.4 ± 0.9 203 ± 87 37 ± 25 26 ± 13 
 Bayg 346 ± 77 21 ± 24 79 ± 64 67 ± 58 0.3 ± 0.1 1.3 ± 0.6 86 ± 61 26 ± 8 84 ± 41 
 Kadkan 228 ± 90 9 ± 5 218 ± 135 147 ± 124 0.4 ± 0.2 1.6 ± 1.6 171 ± 145 28 ± 17 54 ± 43 
Khalil Abad Sheshteraz 147 ± 26 6 ± 1.3 125 ± 28 70 ± 47 0.5 ± 0.1 1.4 ± 0.9 116 ± 38 7 ± 3 17 ± 7 
 Markazi 149 ± 19 6 ± 2 137 ± 21 77 ± 65 0.6 ± 0.1 1.2 ± 0.3 140 ± 20 6 ± 2 21 ± 15 
Khaf Markazi 259 ± 50 15 ± 6 442 ± 360 240 ± 158 0.8 ± 0.7 1.9 ± 0.9 361 ± 229 32 ± 23 51 ± 32 
 Salami 212 ± 41 7 ± 6 144 ± 75 48 ± 32 0.3 ± 0.1 1.9 ± 0.6 75 ± 43 26 ± 13 56 ± 26 
 Sangan 209 ± 17 12 ± 2 377 ± 158 458 ± 226 1 ± 0.4 1.5 ± 0.4 484 ± 221 21 ± 6 34 ± 8 
 Jolge zozan 267 ± 77 35 ± 18 706 ± 895 492 ± 395 1.4 ± 1 1.5 ± 0.8 556 ± 306 14 ± 9 56 ± 50 
Roshtkhar Markazi 267 ± 77 17 ± 11 219 ± 75 190 ± 96 0.6 ± 0.2 2.1 ± 0.8 281 ± 80 18 ± 13 37 ± 17 
 Jangal 351 ± 52 13 ± 3 392 ± 152 422 ± 246 0.6 ± 0.1 3.5 ± 0.5 462 ± 185 53 ± 9 39 ± 13 
Zaveh Markazi 280 ± 58 12 ± 1.5 210 ± 152 113 ± 151 0.4 ± 0.1 1.1 ± 0.6 150 ± 141 47 ± 18 37 ± 20 
 Jolge zaveh 263 ± 95 20 ± 15 138 ± 150 95 ± 107 0.3 ± 0.2 1.2 ± 0.8 123 ± 110 30 ± 19 48 ± 26 
Kashmar Markazi 187 ± 35 14 ± 8 121 ± 62 73 ± 87 0.5 ± 0.1 1.4 ± 0.5 96 ± 79 14 ± 6 51 ± 24 
 Kohsorkh 293 ± 104 17 ± 19 152 ± 143 95 ± 111 0.3 ± 0.1 1.1 ± 0.6 151 ± 107 23 ± 15 56 ± 38 
Gonabad Markazi 320 ± 109 31 ± 17 614 ± 439 501 ± 303 0.6 ± 0.2 2.6 ± 1.2 515 ± 284 60 ± 35 108 ± 66 
 Kakhk 265 ± 76 22 ± 17 258 ± 211 260 ± 257 0.5 ± 0.3 2.1 ± 1.4 237 ± 207 46 ± 52 51 ± 20 
Mahvelat Markazi 176 ± 14 20 ± 4 373 ± 138 280 ± 60 0.6 ± 0.1 1.5 ± 0.5 342 ± 50 25 ± 5 40 ± 10 
 Shadmehr 204 ± 49 18 ± 7 170 ± 135 79 ± 84 0.4 ± 0.1 1.3 ± 0.4 149 ± 97 13 ± 8 36 ± 22 
Table 3

The mean, desirable, and permissible limits of the measured parameters in the water of Khorasan-e-Razavi villages

City Region T. Alk Total hardness EC TDS pH Temp Turbidity 
Bakharz Balavelait 288 ± 127 286 ± 119 1,337 ± 786 1,006 ± 813 7.8 ± 0.2 21.4 ± 3 1.2 ± 1.4 
 Malin 312 ± 71 436 ± 150 2,048 ± 412 1,270 ± 256 7.9 ± 0.1 19.8 ± 0.1 0.8 ± 0.9 
 Markazi 285 ± 45 373 ± 243 1,478 ± 1,419 916 ± 880 7.5 ± 0.3 22.7 ± 0.05 1.6 ± 1.6 
Bajestan Markazi 217 ± 40 229 ± 143 2,429 ± 1,704 837 ± 578 8.0 ± 0.3 21.0 ± 0.5 0.7 ± 0.7 
 Yonsei 208 ± 26 244 ± 116 3,830 ± 1,654 1,196 ± 918 8.0 ± 0.1 20.7 ± 0.2 0.2 ± 0.06 
Bardaskan Markazi 287 ± 100 175 ± 83 845 ± 212 533 ± 133 8.0 ± 0.2 25.0 ± 1.5 0.4 ± 0.3 
 Shahrabad 194 ± 39 78 ± 16 975 ± 109 614 ± 69 8.3 ± 0.1 22.4 ± 0.4 1.4 ± 1.7 
 Anabd 279 ± 88 231 ± 175 1,890 ± 925 1,191 ± 583 8.1 ± 0.1 20.6 ± 2.4 0.7 ± 1.5 
Taibad Markazi 226 ± 25 273 ± 84 1,324 ± 895 844 ± 575 7.9 ± 0.1 21.6 ± 1 1.4 ± 3.5 
 Mian velait 232 ± 49 341 ± 169 1,510 ± 934 997 ± 649 7.8 ± 0.1 21.1 ± 1.2 0.5 ± 0.5 
Torbat Heydariye Markazi 244 ± 69 245 ± 167 1,818 ± 1,232 1,136 ± 770 7.8 ± 0.3 22.2 ± 2.8 0.5 ± 0.4 
 Jolg rokh 209 ± 66 221 ± 114 1,339 ± 507 837 ± 317 8.2 ± 0.1 20.7 ± 2.6 2.8 ± 5.5 
 Bayg 346 ± 77 316 ± 127 948 ± 409 593 ± 256 7.6 ± 0.3 18.2 ± 1.7 1.3 ± 1.8 
 Kadkan 228 ± 90 252 ± 141 1,228 ± 425 767 ± 425 8.0 ± 0.2 22.7 ± 1.3 0.5 ± 0.3 
Khalil Abad Sheshteraz 147 ± 26 71 ± 29 734 ± 201 460 ± 122 8.3 ± 0.3 23.6 ± 0.5 0.5 ± 0.2 
 Markazi 142 ± 19 76 ± 49 776 ± 236 483 ± 149 8.3 ± 0.2 23.3 ± 1 2.1 ± 2.5 
Khaf Markazi 259 ± 50 257 ± 172 2,032 ± 1,087 1,321 ± 706 8.0 ± 0.2 21.2 ± 0.9 0.3 ± 0.2 
 Salami 212 ± 41 246 ± 117 794 ± 247 516 ± 161 8.5 ± 0.2 21.6 ± 0.8 0.7 ± 0.7 
 Sangan 209 ± 17 170 ± 45 2,529 ± 976 1,664 ± 634 8.1 ± 0.1 21.2 ± 0.8 0.3 ± 0.1 
 Jolge zozan 267 ± 77 199 ± 154 2,815 ± 1,595 1,830 ± 1,037 8.0 ± 0.3 21.4 ± 0.7 1.2 ± 2.5 
Roshtkhar Markazi 265 ± 86 167 ± 64 1,492 ± 493 970 ± 321 7.9 ± 0.1 19.1 ± 2 0.5 ± 0.8 
 Jangal 351 ± 53 317 ± 69 2,647 ± 976 1,721 ± 634 8.1 ± 0.1 21.2 ± 0.1 0.3 ± 0.1 
Zaveh Markazi 280 ± 59 286 ± 123 1,172 ± 715 762 ± 465 8.2 ± 0.1 17.4 ± 5.3 0.4 ± 0.4 
 Jolge zaveh 263 ± 95 242 ± 120 1,007 ± 633 654 ± 411 8.0 ± 0.3 23.1 ± 1.7 2.2 ± 10 
Kashmar Markazi 187 ± 135 155 ± 54 822 ± 461 510 ± 286 8.2 ± 0.1 20.2 ± 2.6 0.7 ± 1.3 
 Kohsorkh 293 ± 104 232 ± 146 1,067 ± 648 662 ± 402 8.1 ± 0.3 22.3 ± 1.8 2.6 ± 6.9 
Gonabad Markazi 320 ± 109 516 ± 292 3,223 ± 1,600 2,095 ± 1,040 8.0 ± 0.2 22.6 ± 0.7 0.8 ± 0.8 
 Kakhk 265 ± 76 318 ± 240 1,672 ± 1,196 1,087 ± 77 8.1 ± 0.2 22.7 ± 0.2 5.1 ± 9.4 
Mahvelat Markazi 176 ± 14 203 ± 46 1,956 ± 291 1,272 ± 189 8.0 ± 0.1 21.8 ± 0.1 5.5 ± 5.9 
 Shadmehr 204 ± 49 144 ± 83 947 ± 484 615 ± 315 8.1 ± 0.2 22.3 ± 1.2 0.8 ± 1.4 
City Region T. Alk Total hardness EC TDS pH Temp Turbidity 
Bakharz Balavelait 288 ± 127 286 ± 119 1,337 ± 786 1,006 ± 813 7.8 ± 0.2 21.4 ± 3 1.2 ± 1.4 
 Malin 312 ± 71 436 ± 150 2,048 ± 412 1,270 ± 256 7.9 ± 0.1 19.8 ± 0.1 0.8 ± 0.9 
 Markazi 285 ± 45 373 ± 243 1,478 ± 1,419 916 ± 880 7.5 ± 0.3 22.7 ± 0.05 1.6 ± 1.6 
Bajestan Markazi 217 ± 40 229 ± 143 2,429 ± 1,704 837 ± 578 8.0 ± 0.3 21.0 ± 0.5 0.7 ± 0.7 
 Yonsei 208 ± 26 244 ± 116 3,830 ± 1,654 1,196 ± 918 8.0 ± 0.1 20.7 ± 0.2 0.2 ± 0.06 
Bardaskan Markazi 287 ± 100 175 ± 83 845 ± 212 533 ± 133 8.0 ± 0.2 25.0 ± 1.5 0.4 ± 0.3 
 Shahrabad 194 ± 39 78 ± 16 975 ± 109 614 ± 69 8.3 ± 0.1 22.4 ± 0.4 1.4 ± 1.7 
 Anabd 279 ± 88 231 ± 175 1,890 ± 925 1,191 ± 583 8.1 ± 0.1 20.6 ± 2.4 0.7 ± 1.5 
Taibad Markazi 226 ± 25 273 ± 84 1,324 ± 895 844 ± 575 7.9 ± 0.1 21.6 ± 1 1.4 ± 3.5 
 Mian velait 232 ± 49 341 ± 169 1,510 ± 934 997 ± 649 7.8 ± 0.1 21.1 ± 1.2 0.5 ± 0.5 
Torbat Heydariye Markazi 244 ± 69 245 ± 167 1,818 ± 1,232 1,136 ± 770 7.8 ± 0.3 22.2 ± 2.8 0.5 ± 0.4 
 Jolg rokh 209 ± 66 221 ± 114 1,339 ± 507 837 ± 317 8.2 ± 0.1 20.7 ± 2.6 2.8 ± 5.5 
 Bayg 346 ± 77 316 ± 127 948 ± 409 593 ± 256 7.6 ± 0.3 18.2 ± 1.7 1.3 ± 1.8 
 Kadkan 228 ± 90 252 ± 141 1,228 ± 425 767 ± 425 8.0 ± 0.2 22.7 ± 1.3 0.5 ± 0.3 
Khalil Abad Sheshteraz 147 ± 26 71 ± 29 734 ± 201 460 ± 122 8.3 ± 0.3 23.6 ± 0.5 0.5 ± 0.2 
 Markazi 142 ± 19 76 ± 49 776 ± 236 483 ± 149 8.3 ± 0.2 23.3 ± 1 2.1 ± 2.5 
Khaf Markazi 259 ± 50 257 ± 172 2,032 ± 1,087 1,321 ± 706 8.0 ± 0.2 21.2 ± 0.9 0.3 ± 0.2 
 Salami 212 ± 41 246 ± 117 794 ± 247 516 ± 161 8.5 ± 0.2 21.6 ± 0.8 0.7 ± 0.7 
 Sangan 209 ± 17 170 ± 45 2,529 ± 976 1,664 ± 634 8.1 ± 0.1 21.2 ± 0.8 0.3 ± 0.1 
 Jolge zozan 267 ± 77 199 ± 154 2,815 ± 1,595 1,830 ± 1,037 8.0 ± 0.3 21.4 ± 0.7 1.2 ± 2.5 
Roshtkhar Markazi 265 ± 86 167 ± 64 1,492 ± 493 970 ± 321 7.9 ± 0.1 19.1 ± 2 0.5 ± 0.8 
 Jangal 351 ± 53 317 ± 69 2,647 ± 976 1,721 ± 634 8.1 ± 0.1 21.2 ± 0.1 0.3 ± 0.1 
Zaveh Markazi 280 ± 59 286 ± 123 1,172 ± 715 762 ± 465 8.2 ± 0.1 17.4 ± 5.3 0.4 ± 0.4 
 Jolge zaveh 263 ± 95 242 ± 120 1,007 ± 633 654 ± 411 8.0 ± 0.3 23.1 ± 1.7 2.2 ± 10 
Kashmar Markazi 187 ± 135 155 ± 54 822 ± 461 510 ± 286 8.2 ± 0.1 20.2 ± 2.6 0.7 ± 1.3 
 Kohsorkh 293 ± 104 232 ± 146 1,067 ± 648 662 ± 402 8.1 ± 0.3 22.3 ± 1.8 2.6 ± 6.9 
Gonabad Markazi 320 ± 109 516 ± 292 3,223 ± 1,600 2,095 ± 1,040 8.0 ± 0.2 22.6 ± 0.7 0.8 ± 0.8 
 Kakhk 265 ± 76 318 ± 240 1,672 ± 1,196 1,087 ± 77 8.1 ± 0.2 22.7 ± 0.2 5.1 ± 9.4 
Mahvelat Markazi 176 ± 14 203 ± 46 1,956 ± 291 1,272 ± 189 8.0 ± 0.1 21.8 ± 0.1 5.5 ± 5.9 
 Shadmehr 204 ± 49 144 ± 83 947 ± 484 615 ± 315 8.1 ± 0.2 22.3 ± 1.2 0.8 ± 1.4 
Table 4

Korasan-e-Razavi water properties based on corrosion and scaling indices

City Region Aggressive index Larson–Skold index Puckorius index Ryznar index Langelier index 
Bakharz Balavelait 12.06 ± 0.2 1.3 ± 1.2 6.8 ± 0.8 7.1 ± 0.4 0.37 ± 0.2 
 Malin 12.4 ± 0.2 2.2 ± 0.8 6.5 ± 0.6 6.7 ± 0.4 0.60 ± 0.2 
 Markazi 11.9 ± 0.2 1.3 ± 1.7 6.5 ± 0.4 7.1 ± 0.2 0.24 ± 0.2 
Bajestan Markazi 12.1 ± 0.2 4.2 ± 4.1 7.4 ± 0.4 7.3 ± 0.3 0.38 ± 0.2 
 Yonsei 12.1 ± 0.1 6.5 ± 4 7.6 ± 0.08 7.5 ± 0.08 0.30 ± 0.1 
Bardaskan Markazi 12.0 ± 0.2 0.62 ± 0.3 7.06 ± 1 7.16 ± 0.7 0.42 ± 0.3 
 Shahrabad 11.7 ± 0.06 1.4 ± 0.4 8.5 ± 0.2 8.12 ± 0.1 0.10 ± 0.05 
 Anabd 12.05 ± 0.2 2.4 ± 2.1 7.5 ± 0.8 7.5 ± 0.5 0.29 ± 0.2 
Taibad Markazi 12.08 ± 0.2 1.7 ± 1.5 7.01 ± 0.3 7.1 ± 0.3 0.40 ± 0.2 
 Mianvelait 12.09 ± 0.2 2.2 ± 2.2 6.9 ± 0.4 7.1 ± 0.3 0.38 ± 0.2 
Torbat Heydariye Markazi 11.9 ± 0.3 2.2 ± 2.7 7.2 ± 0.6 7.4 ± 0.5 0.23 ± 0.3 
 Jolg rokh 11.9 ± 0.2 2.09 ± 1.2 8.1 ± 0.4 7.8 ± 0.4 0.20 ± 0.2 
 Bayg 12.07 ± 0.3 0.39 ± 0.2 6.4 ± 0.8 6.9 ± 0.5 0.34 ± 0.2 
 Kadkan 11.9 ± 0.3 1.7 ± 0.8 7.4 ± 0.9 7.3 ± 0.6 0.34 ± 0.3 
Khalil Abad Sheshteraz 11.6 ± 0.2 1.3 ± 0.4 8.7 ± 0.5 8.1 ± 0.3 0.07 ± 0.2 
 Markazi 11.7 ± 0.2 1.5 ± 0.4 8.7 ± 0.8 8.0 ± 0.5 0.12 ± 0.2 
Khaf Markazi 12.1 ± 0.3 2.6 ± 1.9 7.3 ± 0.6 7.3 ± 0.6 0.37 ± 0.3 
 Salami 12.0 ± 0.3 0.9 ± 0.4 7.3 ± 0.6 7.2 ± 0.4 0.39 ± 0.3 
 Sangan 11.9 ± 0.1 3.98 ± 1.7 8.0 ± 0.2 7.7 ± 0.2 0.20 ± 0.1 
 Jolgezozan 12.0 ± 0.3 4.9 ± 4.4 7.4 ± 0.4 7.5 ± 0.4 0.28 ± 0.3 
Roshtkhar Markazi 11.9 ± 0.1 1.6 ± 0.6 7.6 ± 0.4 7.7 ± 0.3 0.10 ± 0.2 
 Jangal 12.2 ± 0.1 2.4 ± 1.4 7.1 ± 0.1 7.2 ± 0.1 0.40 ± 0.1 
Zaveh Markazi 12.1 ± 0.3 1.1 ± 0.9 7.5 ± 0.5 7.4 ± 0.5 0.38 ± 0.2 
 Jolgezaveh 12.1 ± 0.3 0.9 ± 1 7.1 ± 0.7 7.1 ± 0.6 0.48 ± 0.3 
Kashmar Markazi 12.1 ± 0.3 1.1 ± 0.5 7.6 ± 0.5 7.3 ± 0.4 0.40 ± 0.2 
 Kohsorkh 12.2 ± 0.3 0.8 ± 0.7 7.05 ± 1 7.0 ± 0.7 0.50 ± 0.3 
Gonabad Markazi 12.4 ± 0.3 4.3 ± 4.7 6.5 ± 0.7 6.7 ± 0.4 0.66 ± 0.2 
 Kakhk 12.2 ± 0.3 1.9 ± 1.7 7.1 ± 0.7 7.0 ± 0.5 0.50 ± 0.3 
Mahvelat Markazi 11.9 ± 0.1 3.7 ± 0.5 8.0 ± 0.2 7.7 ± 0.2 0.20 ± 0.1 
 Shadmehr 11.9 ± 0.2 1.3 ± 1.3 7.8 ± 0.8 7.6 ± 0.5 0.27 ± 0.2 
City Region Aggressive index Larson–Skold index Puckorius index Ryznar index Langelier index 
Bakharz Balavelait 12.06 ± 0.2 1.3 ± 1.2 6.8 ± 0.8 7.1 ± 0.4 0.37 ± 0.2 
 Malin 12.4 ± 0.2 2.2 ± 0.8 6.5 ± 0.6 6.7 ± 0.4 0.60 ± 0.2 
 Markazi 11.9 ± 0.2 1.3 ± 1.7 6.5 ± 0.4 7.1 ± 0.2 0.24 ± 0.2 
Bajestan Markazi 12.1 ± 0.2 4.2 ± 4.1 7.4 ± 0.4 7.3 ± 0.3 0.38 ± 0.2 
 Yonsei 12.1 ± 0.1 6.5 ± 4 7.6 ± 0.08 7.5 ± 0.08 0.30 ± 0.1 
Bardaskan Markazi 12.0 ± 0.2 0.62 ± 0.3 7.06 ± 1 7.16 ± 0.7 0.42 ± 0.3 
 Shahrabad 11.7 ± 0.06 1.4 ± 0.4 8.5 ± 0.2 8.12 ± 0.1 0.10 ± 0.05 
 Anabd 12.05 ± 0.2 2.4 ± 2.1 7.5 ± 0.8 7.5 ± 0.5 0.29 ± 0.2 
Taibad Markazi 12.08 ± 0.2 1.7 ± 1.5 7.01 ± 0.3 7.1 ± 0.3 0.40 ± 0.2 
 Mianvelait 12.09 ± 0.2 2.2 ± 2.2 6.9 ± 0.4 7.1 ± 0.3 0.38 ± 0.2 
Torbat Heydariye Markazi 11.9 ± 0.3 2.2 ± 2.7 7.2 ± 0.6 7.4 ± 0.5 0.23 ± 0.3 
 Jolg rokh 11.9 ± 0.2 2.09 ± 1.2 8.1 ± 0.4 7.8 ± 0.4 0.20 ± 0.2 
 Bayg 12.07 ± 0.3 0.39 ± 0.2 6.4 ± 0.8 6.9 ± 0.5 0.34 ± 0.2 
 Kadkan 11.9 ± 0.3 1.7 ± 0.8 7.4 ± 0.9 7.3 ± 0.6 0.34 ± 0.3 
Khalil Abad Sheshteraz 11.6 ± 0.2 1.3 ± 0.4 8.7 ± 0.5 8.1 ± 0.3 0.07 ± 0.2 
 Markazi 11.7 ± 0.2 1.5 ± 0.4 8.7 ± 0.8 8.0 ± 0.5 0.12 ± 0.2 
Khaf Markazi 12.1 ± 0.3 2.6 ± 1.9 7.3 ± 0.6 7.3 ± 0.6 0.37 ± 0.3 
 Salami 12.0 ± 0.3 0.9 ± 0.4 7.3 ± 0.6 7.2 ± 0.4 0.39 ± 0.3 
 Sangan 11.9 ± 0.1 3.98 ± 1.7 8.0 ± 0.2 7.7 ± 0.2 0.20 ± 0.1 
 Jolgezozan 12.0 ± 0.3 4.9 ± 4.4 7.4 ± 0.4 7.5 ± 0.4 0.28 ± 0.3 
Roshtkhar Markazi 11.9 ± 0.1 1.6 ± 0.6 7.6 ± 0.4 7.7 ± 0.3 0.10 ± 0.2 
 Jangal 12.2 ± 0.1 2.4 ± 1.4 7.1 ± 0.1 7.2 ± 0.1 0.40 ± 0.1 
Zaveh Markazi 12.1 ± 0.3 1.1 ± 0.9 7.5 ± 0.5 7.4 ± 0.5 0.38 ± 0.2 
 Jolgezaveh 12.1 ± 0.3 0.9 ± 1 7.1 ± 0.7 7.1 ± 0.6 0.48 ± 0.3 
Kashmar Markazi 12.1 ± 0.3 1.1 ± 0.5 7.6 ± 0.5 7.3 ± 0.4 0.40 ± 0.2 
 Kohsorkh 12.2 ± 0.3 0.8 ± 0.7 7.05 ± 1 7.0 ± 0.7 0.50 ± 0.3 
Gonabad Markazi 12.4 ± 0.3 4.3 ± 4.7 6.5 ± 0.7 6.7 ± 0.4 0.66 ± 0.2 
 Kakhk 12.2 ± 0.3 1.9 ± 1.7 7.1 ± 0.7 7.0 ± 0.5 0.50 ± 0.3 
Mahvelat Markazi 11.9 ± 0.1 3.7 ± 0.5 8.0 ± 0.2 7.7 ± 0.2 0.20 ± 0.1 
 Shadmehr 11.9 ± 0.2 1.3 ± 1.3 7.8 ± 0.8 7.6 ± 0.5 0.27 ± 0.2 

The severity of corrosion in different village waters of Khorasan-e-Razavi province that was displayed using a GIS is shown in Figure 2. According to the results, water sources were less corrosive based on RSI, LSI, and PSI. However, according to the AI and Langelier index, water sources presented low scaling and intermediate scaling, respectively. Also, a Piper triangular diagram for the water type in the study area is shown in Figure 3. According to these results, the amounts of sulfate and chloride, calcium and magnesium are high.
Figure 2

Spatial distribution of RSI, LSI, PSI, AI, and LS in the study area.

Figure 2

Spatial distribution of RSI, LSI, PSI, AI, and LS in the study area.

Figure 3

Piper triangular diagram for the water samples in the study area.

Figure 3

Piper triangular diagram for the water samples in the study area.

DISCUSSION

Due to the health effects of corrosiveness and the high population in this area (537,920 inhabitants), ground water monitoring in this area is crucial. According to Table 3, the average pH in the studied water wells was 8.03; in comparison with the internal standard, the average of pH was within the standard limit. In addition, TDS, apart from in the central city of Gonabad, the Sangan, Zozen plain of Khaf, and forestry sector of the Roshtkhar, where they are higher than the standard limit, were at a desirable level. High levels of TDS can lead to such problems as scaling in pipes and changing the taste of water. Opacity was within the allowable range except in the central part of the Mahvelat and in Khaf of Gonabad city. The color in all areas was in the standard range. The average hardness of the water sources in many parts of Khorasan-e-Razavi province was more than the desirable range, but in the central city of Gonabad it exceeded the permitted limit. High amounts of hardness (carbonate and bicarbonate hardness) may cause clogging in pipes as well as disruption in some household appliances like water heaters. Also, comparing the hardness of water in the villages of Khorasan-e-Razavi province with internal and external standards, it was found that the water sources are in the range of hard water class (WHO 2004). According to Table 2, the average concentration of calcium, magnesium, and fluoride were in the acceptable range, but the concentration of sodium in many parts was higher than the standard. In most parts of the studied area, the amounts of chloride and sulfate exceeded permitted limits. High levels of chloride and sulfate in water can accelerate corrosiveness in the distribution networks. In addition, the presence of high sulfate can create an undesirable flavor, as well as reducing the quality of water. Nitrate concentration in all areas was less than the allowed maximum and the color and carbonate were zero. According to Table 4, the Langelier index illustrates that water has a scaling grade. Also, according to the RSI, the water resources of Torbat city had a stabilization grade and the index for this region was 6.99. RSI for the central part of Gonabad was 6.4 (consolidation grade). However, RSI for other parts of the study area was in the range of corrosive. According to the Aggressive index, many parts of the studied regions are in the range of scaling and some parts of the studied area are in the range of corrosive. Based on the LSI, water in the central part of Bardeskan city and Baieg of Torbat city has been precipitated without the interference of chloride and sulfate ions; however, in other parts of the area, a protective film interference with chloride ions and sulfate was formed. Based on the PSI, all areas have a corrosive grade. It is essential to note that PSI for areas with pH less than 8 is not a good indicator for scaling and corrosion (Colin 2008). It was found that the Langelier, Ryznar, Aggressive, and Puckorius indices in the Tabriz water distribution network (northwest Iran) were −0.79, 8.16, 8, and 11.16, respectively, and show the corrosive condition of Tabriz water (Taghipour et al. 2012). Also, a study of the rural water distribution network of Urmia city (northwest Iran), that used the Langelier, Ryznar, and Puckorius indices, indicated corrosive water in some of the investigated regions (Khorsandi et al. 2016). In a study done for monitoring scaling and corrosion of the water in Ilam using the Langelier, Ryznar, Larson–Skold, Puckorius, and Aggressive indices found that water in Ilam city (west Iran) tended to be corrosive (Davil et al. 2009). According to the Langelier index, Ryznar index, and calcium carbonate precipitation potential, assessment of tap water sources in Tafila province showed the corrosion and scale formation (Al-Rawajfeh & Al-Shamaileh 2007).

CONCLUSION

In this study, it was found that the physical and chemical parameters, cations and anions of water in most villages located in Khorasan-e-Razavi were desirable, only the parameters of hardness, alkalinity, sulfate, chloride, sodium, and TDS exceeded the standard level in sectors such as central villages of Gonabad city, central villages of Bajestan city, central villages of Sangan and Zozen plain of Khaf city. The main reason for this could be the existence of minerals and ions in these areas. Based on these results, the following conclusions can be drawn:

  • According to the Langelier index, water in all regions has a tendency to sedimentation.

  • Based on the Ryznar index, in all regions, there is a poor tendency towards corrosion.

  • The Puckorius index showed that water resources in all parts of study tended to be corrosive.

  • Based on the Larson–Skold index, water resources in Kashmar and Zaveh cities tended to be deposition and in other studied cities in the range of corrosive.

  • The water resources in Roshtkhar city tended to be corrosive and in other regions was in the range of corrosive (based on water invasion).

  • Some factors, such as high levels of chloride, total dissolved solids, and sulfate result in aggravating the corrosion process in some areas. Therefore, it is necessary to control the corrosion process. In order to control this difficult and expensive process, some methods, such as painting the pipes, using polyethylene pipes instead of metal pipes and asbestos-cement materials, covering plumbing, maintenance, implementation of cathodic protection for metal pipes, pH adjustment and inject inhibitors have been used in the distribution system. Selecting the best method to prevent the corrosion process depends on chemical properties of water. Using lime as a pH adjustment is the most common method for control of the corrosion process.

ACKNOWLEDGEMENTS

The author would like to acknowledge the financial grant supported on this research as NIMAD grant with official code number 943616 supported by the Ministry of Health, Iran. In addition, we would like to thank the Water and Wastewater Company of Khorasan-e-Razavi province for providing information on the drinking water quality in rural areas.

REFERENCES

REFERENCES
American Water Works Association
1995
Official Notice – Erratum to ANSI/AWWA C402-89, Standard for Asbestos-Cement Transmission Pipe, 18 In. Through 42 In. (450 mm Through 1050 mm), for Potable Water and Other Liquids
.
Journal-American Water Works Association
87
(
1
),
1
18
.
Aslam
M. S.
Adil
M.
Mirza
M. S.
Frigon
D.
2016
Sustainable community-based drinking water systems in developing countries: stakeholder perspectives
.
Journal of Water Supply: Research and Technology-AQUA
65
(
5
),
407
416
.
Bazrafshan
E.
Biglari
H.
Mahvi
A. H.
2012
Phenol removal by electrocoagulation process from aqueous solutions
.
Fresenius Environmental Bulletin
21
(
2
),
364
371
.
Colin
M.
2008
Stress corrosion cracking
.
Scrum Engineering Consultant Material Technology
7
(
4
),
1
6
.
Davil
M. F.
Mahvi
A. H.
Norouzi
M.
Mazloomi
S.
Amarluie
A.
Tardast
A.
Karamitabar
Y.
2009
Survey of corrosion and scaling potential produced water from Ilam water treatment plant
.
World Applied Sciences Journal
7
(
11
),
11
24
.
Edmunds
W.
Ahmed
K.
Whitehead
P.
2015
A review of arsenic and its impacts in groundwater of the Ganges–Brahmaputra–Meghna delta, Bangladesh
.
Environmental Science: Processes & Impacts
17
,
1032
1046
.
Gharibi
H.
Mahvi
A. H.
Nabizadeh
R.
Arabalibeik
H.
Yunesian
M.
Sowlat
M. H.
2012
A novel approach in water quality assessment based on fuzzy logic
.
Journal of Environmental Management
112
,
87
95
.
Hayes
C. R.
Croft
N.
Phillips
E.
Craik
S.
Schock
M.
2016
An evaluation of sampling methods and supporting techniques for tackling lead in drinking water in Alberta Province
.
Journal of Water Supply: Research and Technology-AQUA
65
(
5
),
373
383
.
Khorsandi
H.
Mohammadi
A.
Karimzadeh
S.
Khorsandi
J.
2016
Evaluation of corrosion and scaling potential in rural water distribution network of Urmia, Iran
.
Desalination and Water Treatment
57
,
10585
10592
.
Langelier
W. F.
1936
The analytical control of anti-corrosion water treatment
.
Journal of the American Water Works Association
28
,
1500
1521
.
Mahvi
A. H.
Gholami
F.
Nazmara
S.
2008
Cadmium biosorption from wastewater by Ulmus leaves and their ash
.
European Journal of Scientific Research
23
(
2
),
197
203
.
Maleki
A.
Mahvi
A. H.
Zazouli
M. A.
Izanloo
H.
Barati
A. H.
2011
Aqueous cadmium removal by adsorption on barley hull and barley hull ash
.
Asian Journal of Chemistry
23
(
3
),
1373
1376
.
Mirzabeygi
M.
Naji
M.
Yousefi
N.
Shams
M.
Biglari
H.
Mahvi
A. H.
2016
Evaluation of corrosion and scaling tendency indices in water distribution system: a case study of Torbat Heydariye, Iran
.
Desalination and Water Treatment
57
,
25918
25926
.
Nouri
J.
Mahvi
A. H.
Babaei
A.
Ahmadpour
E.
2006
Regional pattern distribution of groundwater fluoride in the Shush aquifer of Khuzestan County, Iran
.
Fluoride
39
(
4
),
321
325
.
Nouri
J.
Mahvi
A.
Jahed
G.
Babaei
A.
2008
Regional distribution pattern of groundwater heavy metals resulting from agricultural activities
.
Environmental Geology
55
(
6
),
1337
1343
.
Rice
E. W.
Bridgewater
L.
&
APHA
2012
Standard Methods for the Examination of Water and Wastewater
.
American Public Health Association
,
Washington, DC
,
USA
.
Ryznar
J. W.
1944
A new index for determining amount of calcium carbonate scale formed by water.
Journal of American Water Works Association
36
,
472
486
.
Shirmardi
M.
Mesdaghinia
A.
Mahvi
A. H.
Nasseri
S.
Nabizadeh
R.
2012
Kinetics and equilibrium studies on adsorption of acid red 18 (Azo-Dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution
.
E-Journal of Chemistry
9
(
14
),
2371
2383
.
Smith
S. E.
Ta
T.
Holt
D. M.
Delanoue
A.
Colbourne
J. S.
Chamberlain
A. H. L.
Lioyd
B. J.
1999
A pipeline testing facility for the examination of pipe-wall deposits and red-water events in drinking water
.
Water and Environment Journal
13
(
1
),
7
15
.
Sorlini
S.
Biasibetti
M.
Gialdini
F.
Muraca
A.
2016
Modeling and analysis of chlorine dioxide, chlorite, and chlorate propagation in a drinking water distribution system
.
Journal of Water Supply: Research and Technology-AQUA
65
(
8
),
597
611
.
Sun
H.
Shi
B.
Lytle
D. A.
Bai
Y.
Wang
D.
2014
Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system
.
Environmental Science: Processes & Impacts
16
(
3
),
576
585
.
Swan
R.
Bridgeman
J.
Sterling
M.
2016
An assessment of static and dynamic models to predict water treatment works performance
.
Journal of Water Supply: Research and Technology-AQUA
65
(
7
),
515
529
.
Taghipour
H.
Shakerkhatibi
M.
Pourakbar
M.
Belvasi
M.
2012
Corrosion and scaling potential in drinking water distribution system of Tabriz, northwestern Iran
.
Health Promotion Perspectives
2
(
1
),
103
111
.
WHO
2004
Guidelines for Drinking-Water Quality: Recommendations
.
World Health Organization
,
Geneva
,
Switzerland
.