Abstract

Water quality indices (WQI) are essential tools for the overall assessment of the quality of water reserved for human consumption or for other uses. In the present study, two WQI were selected for the assessment of bottled waters: the Canadian Council of Ministers of the Environment (CCME-WQI) index and the bottled water quality index (BWQI). Both indices illustrate the composite influence of different water quality parameters and communicate water quality information to the public and legislative decision-makers. Another indicator of water quality (total hardness–total dissolved solids) is used to compare these results with the two quality indices. The results obtained showed that the mineral waters EM2, EM4, EM7, spring water ES and table water are of excellent quality. Waters EM1, EM3, EM5, and EM6 are good enough to drink. By contrast, the gaseous mineral waters (EMG and EMGL) are considered unacceptable for sustained or substantial consumption.

INTRODUCTION

Access to clean and drinkable water that meets quality standards is still not possible for more than one billion people (Smedley & Kinniburgh 2002). The degradation of water quality due to different contamination sources makes oversight of its quality a necessary priority. Several water quality indices (WQIs) have been developed to evaluate its bio-physical-chemical characteristics. They are used to enable different environmental monitoring agencies to check quickly and make effective decisions. A water's quality is judged on the basis of various substances it contains, their quantity and their effects on the ecosystem and on human beings. It can be evaluated using physical, chemical, biological and microbiological parameters, to match up with the standard level for each substance which can be mandatory or recommended by the World Health Organization (WHO 2011). The use of each quality parameter taken individually does not give enough significance to describe water quality. Therefore, WQIs have been developed to provide numerical expressions linking a large number of quality parameters into a single cumulative factor and thus present a global status on the water quality. They are usually given as a simplified and logical expression, such as excellent, very good, marginal or poor, etc. (Nasirian 2007; Semiromi et al. 2011), allowing management decisions (Karbassi et al. 2011; Lumb et al. 2011).

Finally they reflect the ability of surface water and groundwater to be consumed by humans or not (Akoteyon et al. 2011; Gebrehiwot et al. 2011; Al-Omran et al. 2015; Sethy et al. 2017). Horton (1965) gave the first formulation of a water quality index, in which he took into account the reduction of variables, their reliability and the significance of the sampling sites.

Several WQI have been proposed (Brown et al. 1970; Hallock 2002; Abbasi & Abbasi 2012; Tsakiris 2016). Similarly, several countries have adopted the WQI approach to assess the overall status of their water reservoirs, e.g. Canada (CCME 2001) which adopted the CCME–WQI, the United States (Canter 1996), and the United Kingdom (House 1990).

NSF–WQI (Brown et al. 1970) is the index most widely used. This index is based on the improvement of the Horton index (Horton 1965) after a more in-depth definition of the different parameters that characterize water quality.

The two indices, NSF–WQI and CCME–WQI have been adopted and are used by several countries (Alexakis et al. 2016). The CCME–WQI index is defined as a basis for communication on water quality issues between several countries.

A specific groundwater quality index for human consumption (GWQI) has been developed and is one of the most effective ways to describe the quality of groundwater (Krishan et al. 2016; Zaidi et al. 2016; Bouderbala 2017; Singh & Hussian 2017).

For bottled water, a new index known as BWQI has been presented in the works of Toma et al. (2013) and Tsakiris (2016), constituting the first attempt to classify well kept and conditioned waters.

However, limitations of the different WQIs usually require the use of several WQI. An index relies on subjective judgements to measure only a few of the numerous variables available. Likewise, an index is often limited in terms of time and space. In addition, these indices do not take into account the impact of other types of contaminants (hormones, pharmaceutical traces, radioactive elements, etc.) which have been reported in drinking water in different countries. To take these limitations into account, several methods have been proposed in the literature for estimating unequal influences of the parameters or the indicators in the development of an index. Two broad categories are mostly used: statistical-based methods (like PCA/PFA) and participatory-based methods (subjective evaluation by experts). However, those methods are not universally suitable (Sutadian et al. 2017). Hence, other tools have been tested and have shown to be more satisfactory to determine and prioritize the parameters. Among them the AHP (Analytic Hierarchy Process), which is a Multi Criteria Decision Analysis tool, was tested in different research areas with success (Sutadian et al. 2017). It allows users to calculate the magnitude of each parameter and prioritize them. Sutadian et al. (2017) have used this tool on 70 different water parameters (physical–chemical parameters, chemistry, trace metals, detergents, microbiology, etc.) in a West Java river and the results showed that only 13 parameters were predominant in WQI for this zone of study.

The objective of the present study is to determine the quality of several bottled waters used in Morocco based on the two main quality indices (BWQI and CCME–WQI) and to evaluate the strengths and weaknesses of the two WQI models, and hence to suggest the most appropriate index model.

MATERIALS AND METHODS

Sampling

The bottled waters studied (17 bottles of 0.5 and 1.5 L) were bought in a supermarket according to the recommendations of the International Bottled Water Association (IBWA 2008; Dege 2011).

All the bottles used were made of plastic, mainly polyethylene terephthalate (PET). The chemical analysis of bottled water for trace elements was performed by Inductively Coupled Plasma–Mass Spectrometry (ICP–MS) modeliCAP Q ThermoScientific. The analytical methods applied are described in detail in Standard Methods for the Examination of Water and Wastewater (APHA 2005) and water analysis (Rodier et al. 2009).

The bottled water sector in Morocco has seven main local operators, such as Oulmès Mineral Waters, which is the leading operator with over 72.6% of the total value of the market at 150M$ in turnover, Sotherma (17.5%, 30M$), CCI (3.4%, 5M$), Brasseries of Morocco (3.2%, 5M$), Al Karama (1.4%, 2M$) and other companies including Sodalmu and Mineral Water Chefchaouen. The average consumption of bottled waters was estimated to be 28.4 L per inhabitant in 2015.

The studied waters are either produced in areas far away from agglomerations (denominated natural mineral and spring waters), or table waters that are taken from public drinkable water supply networks of cities and which undergo ultrafiltration treatment or reverse osmosis purification. As per Moroccan Law No. 36–15 on water, the term natural mineral water identifies a water coming directly from a groundwater compartment by natural (spring water) or drilled emergences, which has a naturally constant chemical composition and which does not require any chemical treatment to make it drinkable.

This study includes seven natural mineral waters (EM1–EM7), one gaseous natural mineral water (EMG), one carbonated natural mineral water (EMF), one gaseous light natural mineral water (EMGL), one spring water (ES), five table waters (ET1–ET5) and one carbonated table water (ETP) (Table 1) (Ghalit et al. 2015; METLE 2016).

Table 1

Sampled bottled water in Morocco

Samples Source Society Subsidiary company 
EM1 Aïn Saïss Aïn Saïss SOTHERMA Danone AL MADA 
EM2 Sidi ali Sidi Ali Cheriff OULMES s.a. Holmarcom 
EM3 Sidi Harazem Sidi Harazem SOTHERMA AL MADA 
EM4 Aïn Atlas HAMOU AGAMGAM OULMES s.a. Holmarcom 
EM5 Aïn Ifrane BENSMIM EAE Groupe Castel 
EM6 Aïn Soultane Imouzzer Kandar AL KARAMA Ynna Holding Groupe Chaabi 
EM7 Chaouen Sahel Kharouba Water Mineral Chefchaouen s.a.r.l – 
EMF Aïn Saïss finement pétillante Aïn Saïss SOTHERMA Danone AL MADA 
EMG Oulmés Lalla haya OULMES s.a. Holmarcom 
EMGL Oulmés Légère Lalla haya OULMES s.a. Holmarcom 
ES RIF Sahel Kharouba Water Mineral Chefchaouen s.a.r.l – 
ET1 Bahia Berrechid OULMES s.a. Holmarcom 
ET2 Ciel Oujda The Coca Cola Company CCI 
ET3 Mazine Berrechid SODALMU – 
ET4 Maraqua Benslimane Maraqua Waters s.a.r.l – 
ET5 Amane Souss Ait melloul AL KARAMA Ynna Holding Groupe Chaabi 
ETP Bonaqua Pétillante Marrakech The Coca Cola Company CCI 
Samples Source Society Subsidiary company 
EM1 Aïn Saïss Aïn Saïss SOTHERMA Danone AL MADA 
EM2 Sidi ali Sidi Ali Cheriff OULMES s.a. Holmarcom 
EM3 Sidi Harazem Sidi Harazem SOTHERMA AL MADA 
EM4 Aïn Atlas HAMOU AGAMGAM OULMES s.a. Holmarcom 
EM5 Aïn Ifrane BENSMIM EAE Groupe Castel 
EM6 Aïn Soultane Imouzzer Kandar AL KARAMA Ynna Holding Groupe Chaabi 
EM7 Chaouen Sahel Kharouba Water Mineral Chefchaouen s.a.r.l – 
EMF Aïn Saïss finement pétillante Aïn Saïss SOTHERMA Danone AL MADA 
EMG Oulmés Lalla haya OULMES s.a. Holmarcom 
EMGL Oulmés Légère Lalla haya OULMES s.a. Holmarcom 
ES RIF Sahel Kharouba Water Mineral Chefchaouen s.a.r.l – 
ET1 Bahia Berrechid OULMES s.a. Holmarcom 
ET2 Ciel Oujda The Coca Cola Company CCI 
ET3 Mazine Berrechid SODALMU – 
ET4 Maraqua Benslimane Maraqua Waters s.a.r.l – 
ET5 Amane Souss Ait melloul AL KARAMA Ynna Holding Groupe Chaabi 
ETP Bonaqua Pétillante Marrakech The Coca Cola Company CCI 

Water quality indices

In the present study, two indices of water quality were determined: the BWQI developed by Tsakiris (2016) and adapted for the evaluation of bottled water, and the CCME–WQI defined by the Canadian Council of Ministers of the Environment (CCME 2001). The results were compared to the basic total hardness-total dissolved solids (TH–TDS) index (Li et al. 2014; Du et al. 2017).

BWQI index

The proposed BWQI is actually the first scientifically designed index for bottled water samples. It is based on seven parameters of water: pH, Escherichia coli bacteria, nitrates, nitrites, chlorides, sulphates and electrical conductivity. Each parameter is represented by a sub-index (SI) on a scale of 0 to 1. The model consists of two steps, the first step being an ON/OFF process testing the bottled water sample for two requirements: (a) absence of an Escherichia coli bacteria population; and (b) pH between 6.5 and 9.5. If these two requirements are met, the evaluation procedure continues to the second step, based on a multiplicative model using the other five parameters with their corresponding exponents. This multiplicative process is presented by the following relation: 
formula
where Si is a sub-index ranging from 0 to 1, representing the 7 parameters; the λi exponents refer to sensitivity coefficients and represent the weight of each sub-index in the final index; and N represents the total number of sub-indices that participate in this multiplicative procedure.

It should be mentioned that the absolute maximum values of the selected parameters are the limits of the values proposed by the European and WHO standards (Council Directive of the European Union 1998; WHO 2011), above which water is not appropriate for human consumption. If the measured parameter is above the allowable value, the Si value becomes null.

Usually, scores above 0.850 reflect excellent water, while marks ranging from 0.700 to 0.850 are given for adequate/good water quality For an index less than 0.700, the quality of the water is considered marginal. If the score is null, the bottled water is of unacceptable quality.

CCME–WQI index

CCME–WQI provides a consistent method which was formulated by Canadian jurisdictions to convey water quality information for both home management and public use. Moreover, the Canadian Council of Ministers of the Environment (CCME) has developed a WQI which can be applied by many water agencies in different countries by integrating slight modifications (CCME 2001; Lumb et al. 2006). This method was developed in order to evaluate surface water for the protection of aquatic life in accordance with specific guidelines. The parameters related with various measurements may vary from one station to another, and the sampling protocol requires at least four parameters, which should be sampled at least four times (Tyagi et al. 2013).

The CCME–WQI combines three reduced variables (scope (F1), frequency (F2) and amplitude (F3)) ranging from 0 to 100, and yielding a final number ranging from 0 to 100 according to the equation below: 
formula

Here ‘scope’ represents the degree of non-compliance with water quality guidelines during the study period; ‘frequency’ represents the percentage of ‘non-compliant results’; and ‘amplitude’ represents the gap between the non-conforming analytical results and the objectives to which they relate. According to the CCME–WQI value, water is classified into five categories which are: excellent, good, fair, marginal and poor. The value 100 expresses excellent quality (CCME 2001).

TH vs TDS index

Another basic quality drinking water index (Li et al. 2014; Du et al. 2017) is the relationship between the total dissolved solids and the total hardness. The TDS represents the total weight of solids dissolved in a solution and expresses the degree of salinity of water. Water may be classified as freshwater (TDS < 1,000 mg/L), brackish water (1,000 < TDS < 10,000 mg/L) and saline water (TDS > 10,000 mg/L) (Wanda et al. 2011). The TH is a measure of the Ca2+ and Mg2+ content dissolved in water and is expressed as CaCO3. Waters can be classified as fresh water (TH < 150 mg/L (CaCO3), moderately hard water (150 < TH < 300 mg/L), hard water (300 < TH < 450 mg/L) and very hard water (TH > 450 mg L)) (Peiyue et al. 2011).

Although the TDS and TH are two important parameters for indicating that water may be drinkable, they do not fully reflect the overall quality of the water.

LOCALIZATION AND CHEMISTRY OF BOTTLED WATERS

Table waters produced from public drinkable water supply networks undergoes additional approved treatments (ultrafiltration, reverse osmosis, etc.) before being bottled. The origin of these waters is not taken into account, being blurred by a series of artificial physical–chemical processes which can deeply change their chemical quality. The Bonaqua water (ETP) has been artificially gasified.

Natural mineral waters and spring water are obtained directly from groundwater by a natural emergence or by drilling, and these waters have a constant chemical composition over time and do not require any further chemical treatment to be made drinkable.

With the exception of the mineral water of Chaouen (EM7) and the Rif spring water (ES), which come from the Rif, all other natural waters have their origin in the plateau of Oulmès in Meseta located in the Middle Atlas region in the western part of Morocco (Figure 1).

Figure 1

Geological situation of the main sources of bottled waters in Morocco (Elbatloussi et al. 2005).

Figure 1

Geological situation of the main sources of bottled waters in Morocco (Elbatloussi et al. 2005).

The chemistry of mineral waters from springs or other natural waters depends on their geological context. ES, EM1, EM4, EM5, EM6 and EM7 are extracted or emerge from a Jurassic carbonate aquifer (limestone and dolomite) with bicarbonated calco-magnesian facies, with a possible interaction with other minerals during underground transfer when sodium predominates (Cidu & Bahaj 2000). EM3 comes from Miocene detrital marls with the presence of evaporite layers which give a chlorinated calco-sodium facies (Charroud et al. 2007). EM2, EMG (EMGL) arise in the granites of the Oulmès plateau, showing a sodium bicarbonate facies. Nevertheless, EMG contains chlorides, and presents a natural gas phase which suggests that, in addition to the geological context, the chemical acquisition of water may include the contribution of CO2 and a mineralized fluid of deep origin (Wildemeersch et al. 2010).

To proceed with quality water classification, 29 parameters have been determined according to Rodier et al. (2009) and are compiled in Table 2.

Table 2

Analytical results

 Water EM1 EM2 EM3 EM4 EM5 EM6 EM7 EMF EMG EMGL ES ET1 ET2 ET3 ET4 ET5 ETP 
Parameter Unit                  
E.C. μS/cm 663 291 1,299 335 582 695 518 653 2,160 2,160 175 334 166 355 192 234 1,226 
pH – 7.5 7.55 7.44 7.73 7.55 7.58 7.32 5.45 6.02 5.71 7.1 7.05 7.03 6.94 7.05 6.77 5.38 
Alc mg/L 366 73.2 341.6 170.8 402.6 442.3 311.1 372.1 823.5 854 109.8 42.7 64.1 54.9 30.5 51.9 268.4 
TDS mg/L 545.5 182.3 877.1 273.6 559.9 615.6 464.3 341 1,206 1,358 167 273 160 187 186 122 742 
DOC mg/L 2.45 1.55 7.77 5.22 7.38 8.8 8.05 6.19 11.78 4.69 1.2 4.28 2.74 1.4 1.26 7.78 
Color TCU 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
Ca2+ mg/L 56.1 16 69.7 19.2 89.7 76.1 79.3 63.3 105.2 102.5 28 7.2 11.2 16 14.5 16 50.5 
Mg2+ mg/L 43.6 7.7 37.9 12.2 35.1 46.5 14.8 45.1 66.6 58.2 5.3 4.3 9.6 7.7 7.2 15.8 
TH mg/L 329 69 190 319 71 368 536 98 46 79 68 2,589 495.4 39.7 94.5 381.2 343.3 
mg/L 0.11 0.02 0.18 0.06 0.03 0.49 0.45 0.01 
Cl mg/L 46.15 21.3 246.7 14.2 14.2 10.6 17.7 55 301.7 291.1 12.2 81.6 32 82.5 33.7 42.6 49.7 
NO3-(NO2-) mg/L 8.32 1.49 3.98 5.19 6.62 23.08 1.67 8.64 2.18 2.89 0.78 0.93 1.14 10.07 1.7 2.52 6.69 
SO42− mg/L 8.1 37.6 26.8 12.1 8.5 12.9 25.2 13.8 14.6 15.9 22.7 16.9 16.9 15.8 21.6 105.3 
NH4+ mg/L 0.12 0.1 0.09 0.08 0.08 0.09 0.08 0.08 0.13 0.09 0.08 0.08 
Na+ mg/L 16.6 22.6 148 34.2 2.4 3.4 13.8 15.1 267.2 267.2 10.1 61.4 29.2 45.8 9.6 24 105.6 
K+ mg/L 0.5 2.3 2.4 5.6 0.7 0.7 0.6 0.5 21.5 21.4 0.5 1.1 0.8 0.8 0.5 1.1 
Ba mg/L 11.62 31.69 16.15 40.14 6.01 7.9 24.62 11.98 248.33 272.1 11.34 12.01 0.25 15.77 0.5 75.93 
As mg/L 0.14 1.1 0.39 3.33 0.06 0.14 0.05 0.6 15.58 13.72 0.03 0.1 0.05 0.17 0.01 0.9 
Zn mg/L 0.35 6.09 0.38 0.21 0.97 0.77 3.01 0.42 16.67 5.42 1.96 0.31 0.43 0.93 4.73 2.3 
Pb mg/L 0.01 0.52 0.05 0.04 
Fe mg/L 0.4 0.2 0.5 0.2 0.13 0.94 0.44 0.78 5.22 2.14 0.25 0.58 0.27 8.21 0.08 1.2 
Cr mg/L 0.32 0.03 0.34 0.12 0.69 0.16 0.05 0.4 0.02 0.04 0.04 0.09 0.41 0.04 0.66 0.08 
Cd mg/L 
Cu mg/L 0.08 0.56 0.1 0.03 0.12 0.28 0.05 0.36 11.76 2.02 0.03 0.02 0.19 0.34 0.27 1.32 
Ni mg/L 0.65 0.02 0.1 0.18 0.01 8.71 1.74 0.05 0.06 0.12 0.07 0.43 0.23 
Mn mg/L 0.07 0.05 0.04 0.01 0.03 1.14 0.1 470.66 501.86 21.61 0.03 0.03 0.16 0.07 0.25 
Al mg/L 0.69 0.86 1.42 3.3 0.04 1.87 1.22 2.14 6.33 3.97 0.67 12.11 0.5 16.92 1.82 24.7 
Br mg/L 0.12 0.1 0.13 0.1 0.21 0.1 0.1 0.12 0.14 0.14 0.1 0.15 0.22 0.1 0.1 0.1 
mg/L 1.63 1.1 1.03 1.23 0.12 0.25 0.39 1.63 0.31 0.31 1.32 0.95 1.06 1.14 1.25 1.23 
 Water EM1 EM2 EM3 EM4 EM5 EM6 EM7 EMF EMG EMGL ES ET1 ET2 ET3 ET4 ET5 ETP 
Parameter Unit                  
E.C. μS/cm 663 291 1,299 335 582 695 518 653 2,160 2,160 175 334 166 355 192 234 1,226 
pH – 7.5 7.55 7.44 7.73 7.55 7.58 7.32 5.45 6.02 5.71 7.1 7.05 7.03 6.94 7.05 6.77 5.38 
Alc mg/L 366 73.2 341.6 170.8 402.6 442.3 311.1 372.1 823.5 854 109.8 42.7 64.1 54.9 30.5 51.9 268.4 
TDS mg/L 545.5 182.3 877.1 273.6 559.9 615.6 464.3 341 1,206 1,358 167 273 160 187 186 122 742 
DOC mg/L 2.45 1.55 7.77 5.22 7.38 8.8 8.05 6.19 11.78 4.69 1.2 4.28 2.74 1.4 1.26 7.78 
Color TCU 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
Ca2+ mg/L 56.1 16 69.7 19.2 89.7 76.1 79.3 63.3 105.2 102.5 28 7.2 11.2 16 14.5 16 50.5 
Mg2+ mg/L 43.6 7.7 37.9 12.2 35.1 46.5 14.8 45.1 66.6 58.2 5.3 4.3 9.6 7.7 7.2 15.8 
TH mg/L 329 69 190 319 71 368 536 98 46 79 68 2,589 495.4 39.7 94.5 381.2 343.3 
mg/L 0.11 0.02 0.18 0.06 0.03 0.49 0.45 0.01 
Cl mg/L 46.15 21.3 246.7 14.2 14.2 10.6 17.7 55 301.7 291.1 12.2 81.6 32 82.5 33.7 42.6 49.7 
NO3-(NO2-) mg/L 8.32 1.49 3.98 5.19 6.62 23.08 1.67 8.64 2.18 2.89 0.78 0.93 1.14 10.07 1.7 2.52 6.69 
SO42− mg/L 8.1 37.6 26.8 12.1 8.5 12.9 25.2 13.8 14.6 15.9 22.7 16.9 16.9 15.8 21.6 105.3 
NH4+ mg/L 0.12 0.1 0.09 0.08 0.08 0.09 0.08 0.08 0.13 0.09 0.08 0.08 
Na+ mg/L 16.6 22.6 148 34.2 2.4 3.4 13.8 15.1 267.2 267.2 10.1 61.4 29.2 45.8 9.6 24 105.6 
K+ mg/L 0.5 2.3 2.4 5.6 0.7 0.7 0.6 0.5 21.5 21.4 0.5 1.1 0.8 0.8 0.5 1.1 
Ba mg/L 11.62 31.69 16.15 40.14 6.01 7.9 24.62 11.98 248.33 272.1 11.34 12.01 0.25 15.77 0.5 75.93 
As mg/L 0.14 1.1 0.39 3.33 0.06 0.14 0.05 0.6 15.58 13.72 0.03 0.1 0.05 0.17 0.01 0.9 
Zn mg/L 0.35 6.09 0.38 0.21 0.97 0.77 3.01 0.42 16.67 5.42 1.96 0.31 0.43 0.93 4.73 2.3 
Pb mg/L 0.01 0.52 0.05 0.04 
Fe mg/L 0.4 0.2 0.5 0.2 0.13 0.94 0.44 0.78 5.22 2.14 0.25 0.58 0.27 8.21 0.08 1.2 
Cr mg/L 0.32 0.03 0.34 0.12 0.69 0.16 0.05 0.4 0.02 0.04 0.04 0.09 0.41 0.04 0.66 0.08 
Cd mg/L 
Cu mg/L 0.08 0.56 0.1 0.03 0.12 0.28 0.05 0.36 11.76 2.02 0.03 0.02 0.19 0.34 0.27 1.32 
Ni mg/L 0.65 0.02 0.1 0.18 0.01 8.71 1.74 0.05 0.06 0.12 0.07 0.43 0.23 
Mn mg/L 0.07 0.05 0.04 0.01 0.03 1.14 0.1 470.66 501.86 21.61 0.03 0.03 0.16 0.07 0.25 
Al mg/L 0.69 0.86 1.42 3.3 0.04 1.87 1.22 2.14 6.33 3.97 0.67 12.11 0.5 16.92 1.82 24.7 
Br mg/L 0.12 0.1 0.13 0.1 0.21 0.1 0.1 0.12 0.14 0.14 0.1 0.15 0.22 0.1 0.1 0.1 
mg/L 1.63 1.1 1.03 1.23 0.12 0.25 0.39 1.63 0.31 0.31 1.32 0.95 1.06 1.14 1.25 1.23 

RESULTS AND DISCUSSION

The calculations of the BWQI, CCME–WQI model and TDS–TH are summarized in Table 3.

Table 3

Quality indices of bottled water in Morocco

  BWQIa
 
CCME–WQIb
 
TDS–THc
 
Sample Code Score Quality Score Quality Zone Quality 
Aïn Saïss EM1 0.76 Adequate/Good 90 Good Z3 Hard–Fresh 
Sidi Ali EM2 0.92 Excellent 100 Excellent Z1 Soft–Fresh 
Sidi Harazem EM3 0.52 Marginal 95 Excellent Z3 Hard–Fresh 
Aïn Atlas EM4 0.87 Excellent 100 Excellent Z1 Soft–Fresh 
Aïn Ifrane EM5 0.82 Adequate/Good 95 Excellent Z3 Hard–Fresh 
Aïn Soultane EM6 0.51 Marginal 95 Excellent Z3 Hard–Fresh 
Chaouen EM7 0.92 Excellent 100 Excellent Z2 Moderately Hard–Fresh 
Aïn Saïss FP EMF 0.76 Adequate/Good 90 Good Z3 Hard–Fresh 
Oulmés EMG Unacceptable 67 Fair Z8 Very Hard–Brackish 
Oulmés L EMGL Unacceptable 67 Fair Z8 Very Hard–Brackish 
RIF ES 0.95 Excellent 100 Excellent Z1 Soft–Fresh 
Bahia ET1 0.88 Excellent 100 Excellent Z1 Soft–Fresh 
Ciel ET2 0.90 Excellent 100 Excellent Z1 Soft–Fresh 
Mazine ET3 0.79 Adequate/Good 100 Excellent Z1 Soft–Fresh 
Maraqua ET4 0.90 Excellent 100 Excellent Z1 Soft–Fresh 
Aman Souss ET5 0.87 Excellent 100 Excellent Z1 Soft–Fresh 
Bonaqua P ETP 0.87 Excellent 90 Good Z2 Moderately Hard–Fresh 
  BWQIa
 
CCME–WQIb
 
TDS–THc
 
Sample Code Score Quality Score Quality Zone Quality 
Aïn Saïss EM1 0.76 Adequate/Good 90 Good Z3 Hard–Fresh 
Sidi Ali EM2 0.92 Excellent 100 Excellent Z1 Soft–Fresh 
Sidi Harazem EM3 0.52 Marginal 95 Excellent Z3 Hard–Fresh 
Aïn Atlas EM4 0.87 Excellent 100 Excellent Z1 Soft–Fresh 
Aïn Ifrane EM5 0.82 Adequate/Good 95 Excellent Z3 Hard–Fresh 
Aïn Soultane EM6 0.51 Marginal 95 Excellent Z3 Hard–Fresh 
Chaouen EM7 0.92 Excellent 100 Excellent Z2 Moderately Hard–Fresh 
Aïn Saïss FP EMF 0.76 Adequate/Good 90 Good Z3 Hard–Fresh 
Oulmés EMG Unacceptable 67 Fair Z8 Very Hard–Brackish 
Oulmés L EMGL Unacceptable 67 Fair Z8 Very Hard–Brackish 
RIF ES 0.95 Excellent 100 Excellent Z1 Soft–Fresh 
Bahia ET1 0.88 Excellent 100 Excellent Z1 Soft–Fresh 
Ciel ET2 0.90 Excellent 100 Excellent Z1 Soft–Fresh 
Mazine ET3 0.79 Adequate/Good 100 Excellent Z1 Soft–Fresh 
Maraqua ET4 0.90 Excellent 100 Excellent Z1 Soft–Fresh 
Aman Souss ET5 0.87 Excellent 100 Excellent Z1 Soft–Fresh 
Bonaqua P ETP 0.87 Excellent 90 Good Z2 Moderately Hard–Fresh 

The classification of waters in relation to the TDS–TH graph (Figure 2) shows waters distributed between plot zones Z1, Z2, Z3 and Z8: Z1 includes table waters with low mineralization and fresh waters EM2 and EM4 from the Oulmes plateau; Z2 corresponds to carbonated table water and mineral waters from the Chaouen area; and Z3 comprises the Middle Atlas waters, except for the deep thermal waters of Oulmès, which are classified in Z8 as very hard waters.

Figure 2

Water distribution according to the TDS–TH classification.

Figure 2

Water distribution according to the TDS–TH classification.

Considering Table 3, the classifications of the three quality indices generally present the same range in the excellent–good level for the whole sample set. However the TDS–TH methodology is more restrictive with intermediate range quality.

The majority of the waters studied, still or gasified, are in the excellent to good categories. The mineral waters EM3, EM5 and EM6 show lower quality indices than those of the other waters. Gaseous mineral waters (EMG and EMGL) have been found to be fair or unacceptable for human consumption.

Regarding the origin of waters, the water extracted from the Rif (EM7 and ES) and the superficial springs (EM2 and EM4) are of excellent quality. Springs from Middle Atlas show good quality indices, whereas the deep thermal waters taken from the plateau of Oulmès are of a mediocre quality. Overall (Figure 3), the ‘excellent’ qualification represents 82.35% of the waters tested for CCME–WQI, 52.94% for BWQI and 47.06% for TDS–TH. The three approaches agree in classifying the gaseous mineral waters as not recommended for long-duration consumption.

Figure 3

BWQI, CCME–WQI and TDS-TH distribution of the bottled water.

Figure 3

BWQI, CCME–WQI and TDS-TH distribution of the bottled water.

CONCLUSION

In order to assess the impact of physico-chemical parameters on the quality of water (drinking water in particular), different WQI have been developed, based on numerical modelling, presenting a global status for water quality. Even if these assessments are often subjective and incomplete (e.g. non-inclusion of new contaminants) they are used by numerous countries to define the conditions of use.

Two global WQI used internationally (CCME–WQI and BWQI) have been tested on Moroccan bottled natural and table waters in comparison with a more basic quality classification, TDS–TH, to show their respective levels of adequacy. The main classifications (optimal, average, poor) are well discriminated by the two WQI indices and the TDS–TH methodology, but the latter is more restrictive to the intermediate range quality.

The majority of the waters studied, still or gasified, are classified in the excellent to good categories. The mineral waters EM3, EM5 and EM6 show lower quality indices and the gaseous mineral waters (EMG and EMGL) are considered fair to unacceptable for regular human consumption. The qualifications are attributed in relation to one or more parameters in combination (high mineralization, high alkalinity, high NaCl content, CO2 content) which are determined by the water's circulation in the local or regional geological context, in particular in the case of EM3 with dissolution of evaporites in Miocene formation, and for EMG and EMGL deep and gaseous thermal water origins. Table waters show good quality, except for ETp where the addition of CO2 causes a decrease of its quality.

Future work will focus on the analysis of 18O and 2H isotopes of Moroccan natural waters to highlight the effect of geo-climatic origin on water quality and the potential effect of chemical interaction beween water and plastic bottles in relation to the storage duration and temperature.

REFERENCES

REFERENCES
Abbasi
T.
&
Abbasi
S. A.
2012
Water Quality Indices
.
Elsevier
,
Oxford
,
UK
.
Akoteyon
I. S.
,
Omotayo
A. O.
,
Soladoye
O.
&
Olaoye
H. O.
2011
Determination of water quality index and suitability of urban river for municipal water supply in Lagos-Nigeria
.
European Journal of Scientific Research
54
(
2
),
263
271
.
Alexakis
D.
,
Tsihrintzis
V. A.
,
Tsakiris
G.
&
Gikas
G. D.
2016
Suitability of water quality indices for application in lakes in the Mediterranean
.
Water Resources Management
30
(
5
),
1621
1633
.
Al-Omran
A.
,
Al-Barakah
F.
,
Altuquq
A.
,
Aly
A.
&
Nadeem
M.
2015
Drinking water quality assessment and water quality index of Riyadh, Saudi Arabia
.
Water Quality Research Journal
50
(
3
),
287
296
.
APHA
2005
Standard Methods for the Examination of Water and Wastewater
,
21st edn
.
American Public Health Association
,
Washington, DC
,
USA
.
Bouderbala
A.
2017
Assessment of water quality index for the groundwater in the upper Cheliff Plain, Algeria
.
Journal of the Geological Society of India
90
,
347
356
.
Brown
R. M.
,
McClelland
N. I.
,
Deininger
R. A.
&
Tozer
R. G.
1970
A water quality index – do we dare?
Water Sewage Works
117
,
339
343
.
Canter
L. W.
1996
Environmental Impact Assessment
,
2nd edn
.
McGraw-Hill
,
New York
.
CCME (Canadian Council of Ministers of the Environment)
2001
Canadian Water Quality Index 1.0 Technical Report and User's Manual
.
Canadian Environmental Quality Guidelines, Technical Subcommittee
,
Gatineau, Quebec
,
Canada
.
Charroud
M.
,
Cherai
B.
,
Benabdelhadi
M.
&
Falguères
C.
2007
Impact de la néotectonique quaternaire sur la dynamique sédimentaire du Saïs (Maroc): du bassin d'avant fosse pliocène au plateau continental quaternaire
.
Revue de L'Association Française Pour L'étude du Quaternaire
18
(
4
),
327
334
(Impact of Quaternary neotectonics on the sedimentary dynamics of Saïs (Morocco): from the basin before the Pliocene through to the Quaternary continental shelf. Review of the French Association for Quaternary Studies 18 (4), 327–334 (in French))
.
Cidu
R.
&
Bahaj
S.
2000
Geochemistry of thermal waters from Morocco
.
Geothermics
29
(
3
),
407
430
.
Council Directive of the European Union
1998
Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, Official Journal L330, 05/12/1998, 32–54.
Dege
N.
2011
Technology of Bottled Water
,
3rd edn
.
Wiley–Blackwell
,
Oxford
,
UK
.
Elbatloussi
D.
,
Cheddadi
M.
,
Dadi
S.
,
Ruthy
I.
,
Orban
P.
&
Dassargues
A.
2005
Carte hydrogéologique du plateau d'Oulmès (Maroc). Eds Dept de Géologie, Ecole Nationale de l'Industrie Minérale Rabat, Maroc/Service d'Hydrogéologie Universite de Liège, Belgique (Hydrogeological map of the plateau of Oulmès (Morocco). Eds Dept of Geology, National School of Mineral Industry Rabat-Morocco/Department of Hydrogeology, University of Liège, Belgium (in French)).
Gebrehiwot
A. B.
,
Tadesse
N.
&
Jigar
E.
2011
Application of water quality index to assess suitablity of groundwater quality for drinking purposes in Hantebet watershed, Tigray, Northern Ethiopia
.
ISABB Journal of Food and Agricultural Sciences
1
,
22
30
.
Ghalit
M.
,
Gharibi
E.
,
Taupin
J. D.
,
Yousfi
E. B.
&
Zarrouk
A.
2015
Nutritional contribution in trace elements of bottled water in Morocco
.
Der Pharmacia Lettre
7
,
202
211
.
Hallock
D.
2002
A Water Quality Index for Ecology's Stream Monitoring Program
.
Washington State Department of Ecology
,
Olympia, Washington
,
USA
.
Horton
R. K.
1965
An index number system for rating water quality
.
Journal of Water Pollution Control Federation
37
,
300
306
.
House
M. A.
1990
Water quality indices as indicators of ecosystem change
.
Environmental Monitoring and Assessment
15
,
255
263
.
International Bottled Water Association
.
2008
Bottled Water Code of Practice
.
IBWA
,
Alexandria, VA
,
USA
.
Karbassi
A. R.
,
Mir Mohammad Hosseini
F.
,
Baghvand
A.
&
Nazariha
M.
2011
Development of water quality index (WQI) for Gorganrood River
.
International Journal of Environmental Research
5
,
1041
1046
.
Krishan
G.
,
Singh
S.
,
Kumar
C. P.
,
Gurjar
S.
&
Ghosh
N. C.
2016
Assessment of water quality index (WQI) of groundwater in Rajkot district, Gujarat, India
.
Journal of Earth Science and Climatic Change
7
,
341
.
doi:10.4172/2157-7617.1000341
.
Lumb
A.
,
Halliwell
D.
&
Sharma
T.
2006
Application of CCME water quality index to monitor water quality: a case of the Mackenzie river basin, Canada
.
Environmental Monitoring and Assessment
113
,
411
429
.
Lumb
A.
,
Sharma
T. C.
&
Bibeault
J. F.
2011
A review of genesis and evolution of water quality index (WQI) and some future directions
.
Water Quality, Exposure and Health
3
(
1
),
11
24
.
METLE (Ministère de l'Equipement, du Transport, de la Logistique et de l'Eau, Morocco)
2016
Loi n°36-15 relative à l'eau, Bulletin Officiel n°6506, 1482–1505. Available online at http://www.water.gov.ma/reglementation/lois-10-95-sur-leau/ (Accessed 6 August 2018).
Rodier
J.
,
Legube
B.
,
Merlet
N.
&
Brunet
J.
2009
L'analyse de l'eau
.
(9e) Dunod
,
Paris, France
.
Semiromi
F. B.
,
Hassani
A. H.
,
Torabian
A.
,
Karbassi
A. R.
&
Lotfi
F. H.
2011
Water quality index development using fuzzy logic: a case study of the Karoon River of Iran
.
African Journal of Biotechnology
10
(
50
),
10125
10133
.
Singh
S.
&
Hussian
A.
2017
Water quality index development for groundwater quality assessment of Greater Noida sub-basin, Uttar Pradesh, India
.
Cogent Engineering
3
(
1
),
1177155
.
doi.org/10.1080/23311916.2016.1177155
.
Smedley
P. L.
&
Kinniburgh
D. G.
2002
A review of the source, behaviour and distribution of arsenic in natural waters
.
Applied Geochemistry
17
,
517
568
.
Sutadian
A. D.
,
Mutil
N.
,
Yilmaz
A. G.
&
Terera
B. J. V.
2017
Using the analytic hierarchy process to identify parameter weights for developing a water quality index
.
Ecological Indicators
75
,
220
233
.
Toma
J. J.
,
Ahmed
R. S.
&
Abdulla
Z. K.
2013
Application of water quality index for assessment water quality in some bottled water Erbil City, Kurdistan Region, Iraq
.
Journal of Advanced Laboratory Research in Biology
4
,
118
124
.
Tsakiris
V.
2016
A new water quality index for bottled water assessment
.
European Water
54
,
19
26
.
Tyagi
S.
,
Sharma
B.
,
Singh
P.
&
Rajendra Dobhal
R.
2013
Water quality assessment in terms of water quality index
.
American Journal of Water Resources
1
,
34
38
.
Wanda
E.
,
Monjerezi
M.
,
Mwatseteza
J. F.
&
Kazembe
L. N.
2011
Hydro-geochemical appraisal of groundwater quality from weathered basement aquifers in Northern Malawi
.
Physics and Chemistry of the Earth, Parts A/B/C
36
(
14
),
1197
1207
.
WHO
2011
Guidelines for Drinking-Water Quality
,
4th edn
.
World Health Organization
,
Geneva
,
Switzerland
.
Wildemeersch
S.
,
Orban
P.
,
Ruthy
I.
,
Grière
O.
,
Olive
P.
,
El Youbi
A.
&
Dassargues
A.
2010
Towards a better understanding of the Oulmes hydrogeological system (Mid-Atlas, Morocco)
.
Environmental Earth Sciences
60
,
1753
1769
.