Abstract

The agriculture sector of Nepal has been plagued by problems of poor irrigation networks and infrastructure. This has forced farmers to use fuel and electricity-based pumps, which are both expensive and unsustainable. The problems related to the distribution of power and fluctuating voltages add to the ineffectiveness of the electrical pumping system. So, as a better alternative for environment-friendly and inexpensive irrigation infrastructure, this paper proposes a design methodology of a community-operated hydro-powered pump called water turbine pump (WTP). Although introduced in the 1920s, this technology has been largely ignored nowadays. Moreover, there are insufficient literature and technical documentation to support the design decisions for developers. With an objective to induce momentum in the research and development of this technology, this work presents a well-defined methodology to design a WTP using a propeller turbine directly coupled with a centrifugal pump, in reference to a site located in Bardiya, Nepal. The WTP designed using this methodology could utilize a head of 3 m and a flow rate of 150 lps to deliver 14 lps of water to a height of 14.9 m, yielding a head ratio of 1:5, with an overall efficiency of 50.5%.

HIGHLIGHTS

  • Water turbine pump (WTP) is a clean, renewable, and sustainable pumping solution for irrigation purposes.

  • This paper presents a detailed methodology for the design of WTP with a propeller turbine and centrifugal pump.

  • This paper aims to revive historical pumping technology by laying out a foundation stone in research and documentation of WTPs.

Graphical Abstract

Graphical Abstract
Graphical Abstract
This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Supplementary data