Abstract

In this study, a novel Co(II)-based adsorbent Co-H2L is developed for the removal of phosphate. The batch experiments demonstrate that the Co-H2L possesses preferable ability of phosphate capture from water in mildly acidic to neutral pHs, with a maximum adsorption capacity of 194.44 mg P g−1. Adsorption isotherms for phosphate agree with the Langmuir model, suggesting a monolayer process. The mechanism for phosphate adsorption onto Co-H2L mainly followed the coordination mechanism, and the Co valence electron orbitals play the key role in the phosphate adsorption. In addition, the Co-H2L adsorbent can selectively remove phosphate ions in the presence of the competing ions (Cl, NO3, and SO42−) at higher concentrations. Our results therefore indicate that the Co(II)-based adsorbent is expected to find extensive applications in phosphate removal for water management.

This content is only available as a PDF.

Supplementary data