A field experiment shows that rapid downward migration of solutes and microorganisms can occur in a fractured till. A solute tracer, chloride, and a bacteriophage tracer, PRD-1, were added to groundwater and allowed to infiltrate downwards over a 4 × 4 m area. Chloride was detected in horizontal filters at 2.0 m depth within 3-40 days of the start of the tracer test, and PRD-1 was detected in the same filters within 0.27 - 27 days. At 2.8 m depth chloride appeared in all the filters, but PRD-1 appeared in only about one-third of the filters. At 4.0 m depth chloride appeared in about one-third of the filters and trace amounts of PRD-1 were detected in only 2 of the 36 filters. Transport rates and peak tracer concentrations decreased with depth, but at each depth there was a high degree of variability. The transport data is generally consistent with expectations based on hydraulic conductivity measurements and on the observed density of fractures and biopores, both of which decrease with depth. Transport of chloride was apparently retarded by diffusion into the fine-grained matrix between fractures, but the rapid transport of PRD-1, with little dispersion, indicates that it was transported mainly through the fractures.

You do not currently have access to this content.