The problem of seawater intrusion is encountered in almost all coastal aquifers. Because of its higher density, the seawater migrates inland into freshwater aquifers even without any pumping activities. Excessive pumping of groundwater would accelerate seawater intrusion. Climate change and sea level rise represent critical parameters affecting the rate and degree of seawater intrusion. In this paper, a coupled transient finite element model for simulation of fluid flow and solute transport in saturated and unsaturated soils (2D-FEST) is employed to study the seawater intrusion in the Nile Delta aquifer. The results of the current model are compared to results of SEAWAT for model verification. The (2D-FEST) model is used to investigate seawater intrusion considering the impacts of climate change. Three scenarios are studied: (a) rise in sea level, (b) decline of the piezometric head at the land side due to excessive pumping, and (c) combination of sea level rise and decline of the piezometric head. The results show that the rise in the sea level has a significant effect on the position of the transition zone. The third scenario represents the worst case under which the groundwater quality would deteriorate in large areas of the Nile Delta aquifer.

You do not currently have access to this content.