Aiming at quantifying the impacts of soil properties on rainfall–runoff processes, the soil saturated hydraulic conductivity (Ks) and the soil erodibility factor (K) were selected and incorporated into the classical topographic index ln(α/tanβ) (TI) to construct a modified topographic index (TI′). Stream network extractions and performance evaluations of topography-based hydrological models based on TI and TI′ were carried out in three watersheds with different climate conditions. The investigations indicated that: (1) the changes of stream networks caused by the incorporation of Ks·K could correctly present the phenomenon that the points would show greater potential to be saturated to become contributing areas if their underlying soils possess higher hydraulic conductivities and stronger erodibility; and (2) the performances of the topography-based hydrological models TOPMODEL and TOPX were improved when simulating the daily rainfall–runoff processes with the input of ln(α/(tanβ·Ks·K) (TI3). TI3 was suitable for rainfall–runoff simulation in arid and semi-arid, humid and semi-humid, and humid regions. The performance improvements increased as the spatial heterogeneity of Ks·K enlarged. Based on these investigations, TI3 was recommended for the modified form of TI′.

You do not currently have access to this content.