Abstract

Hydraulic-habitat models combine the dynamic behavior of river discharge with geomorphological and ecological responses. In this study, they are used for estimating environmental flow requirements. We applied a Pseudo-two-dimensional (2D) model based on the one-dimensional (1D) HEC-RAS model and an in-house 2D (FLOW-R2D) hydrodynamic model to a section of river for several flows in respect of summer conditions of the study reach, and compared the results derived from the models in terms of water depths and velocities as well as habitat predictions in terms of weighted usable area (WUA). In general, 2D models are more promising in habitat studies since they quantify spatial variations and combinations of flow patterns important to stream flora and fauna in a higher detail than the 1D models. Relationships between WUA and discharge for the two models were examined, to compare the similarity as well as the magnitude of predictions over the modelled discharge range. The models predicted differences in the location of maxima and changes in variation of velocity and water depth. Finally, differences in spatial distribution (in terms of suitability indices and WUA) between the Pseudo-2D and the fully 2D modelling results can be considerable on a cell-by-cell basis.

You do not currently have access to this content.