In Xishuangbanna, southwest China, the large-scale monoculture rubber plantation replaced the primary tropical forest, which changed the regional hydrology processes and biogeochemical cycles. As throughfall was an important component of the forest ecosystem water input, we researched the spatial variability and temporal stability of throughfall in the rubber plantation. We recorded 30 rainfall events by using 90 rain gauges during 2015–2016. We found a highly significant linear relationship between rainfall and throughfall, and a strong power correlation between the peak 30 min rainfall intensity and throughfall. The coefficient of variation for throughfall was significant and negatively correlated with rainfall and rainfall intensity. We also observed that throughfall had a strong spatial autocorrelation that would decrease during heavy rainfall events. The results indicate that the leaf area index did not have a significant relationship with throughfall. However, the lateral translocation of the throughfall in the canopy significantly affected the spatial distribution of the throughfall. Generally, the lower throughfall positions were close to the nearest rubber trunk, and the higher throughfall positions were mostly below the slope. This study contributes to the knowledge of the spatiotemporal heterogeneity of throughfall and helps elucidate the interception processes in the rubber plantation.

You do not currently have access to this content.