Due to the large uncertainties of long-term precipitation prediction and reservoir operation, it is difficult to forecast long-term streamflow for large basins with cascade reservoirs. In this paper, a framework coupling the original Climate Forecasting System (CFS) precipitation with the Soil and Water Assessment Tool (SWAT) was proposed to forecast the nine-month streamflow for the Cascade Reservoir System of Han River (CRSHR) including Shiquan, Ankang and Danjiangkou reservoirs. First, CFS precipitation was tested against the observation and post-processed through two machine learning algorithms, random forest and support vector regression. Results showed the correlation coefficients between the monthly areal CFS precipitation (post-processed) and observation were 0.91–0.96, confirming that CFS precipitation post-processing using machine learning was not affected by the extended forecast period. Additionally, two precipitation spatio-temporal distribution models, original CFS and similar historical observation, were adopted to disaggregate the processed monthly areal CFS precipitation to daily subbasin-scale precipitation. Based on the reservoir restoring flow, the regional SWAT was calibrated for CRSHR. The Nash–Sutcliffe efficiencies for three reservoirs flow simulation were 0.86, 0.88 and 0.84, respectively, meeting the accuracy requirement. The experimental forecast showed that for three reservoirs, long-term streamflow forecast with similar historical observed distribution was more accurate than that with original CFS.

You do not currently have access to this content.