Abstract

Application of complementary relationship (CR) approaches using only routine meteorological data is a very convenient method of estimating actual evapotranspiration (ETa). Reanalysis datasets and remote sensing data provide good tools to overcome the difficulties in obtaining observation data. This study of the Hotan River Basin (HRB) in northwest China serves as a prime example for estimation of ETa during 2006–2014 by using the modified generalized CR. Based on comparison and analysis, the maximum potential evaporation calculated by the Penman-based equation was adopted. The estimated ETa rates were verified using a regional water balance method at annual time scales because of the limited available data. The calibration parameter was calibrated based on the elevation and underlying surface types. The mean annual ETa ranged from 2.3 mm to 800 mm during 2006–2014. ETa rates in the plains regions were higher than those in the mountainous regions. Most of ETa was concentrated in the months of May to September. A water deficit occurred in the middle and lower regions, while a water surplus occurred in the upper regions. This study not only provided a new concept for calibration, but also a potential solution for different underlying surfaces and time scales.

You do not currently have access to this content.