This study used land evapotranspiration (ET) values from 61 ChinaFLUX eddy covariance (EC) sites and water-balanced derived ET in ten basins to investigate the performance of Global Land Evaporation Amsterdam Model (GLEAM) V3.0a ET estimates (i.e., ETG) over China. We quantified the spatio-temporal characteristics of ETG and the impact of precipitation (P) and potential ET (ETP) on ETG. ETG was appropriate for estimating daily, seasonal, and annual ET rates. The mean annual ETG increased progressively from the northwest to southeast of China. Domain-averaged annual ETG over China was 421.90 mm year−1 during 1980 to 2014. The spatial patterns of ETG were in accordance with those of annual precipitation. Low ETG values occurred in the Northwest River Basin, and relatively high ET values were found across southern China. ETG showed the highest annual variation in the Northwest River Basin and low variation in the southwest region, which captured seasonal variations with maxima in summer and minima in winter. The inter-annual variation of annual ETG and ETP differed significantly from 1980 to 2014, yielding prominent spatial variability around −16.50 to 9.10 mm year−2 and −1.90 to 4.70 mm year−2, respectively. Annual ETG is correlated well with P and ETP at each site.

You do not currently have access to this content.