Abstract

In order to use the best suited snow models to investigate snow conditions at ungauged sites and for a changed climate, we have tested four snow models for 17 catchments in Norway. The Crocus and seNorge models are gridded whereas the Distance Distribution Dynamics (DDD) model with its two versions, DDD_CX and DDD_EB, is catchment based. Crocus and DDD_EB use energy balance for estimating snowmelt and SeNorge and DDD_CX use temperature-index methods. SeNorge has calibrated the temperature-index against observed snowmelt, whereas DDD_CX has calibrated the temperature-index against runoff. The models use gridded temperature and precipitation at 1 h resolution for the period 2013–2016. Crocus needs additional forcing from a numerical weather prediction model, whereas DDD_EB calculates the energy-balance elements by using proxy models forced by temperature and precipitation. The threshold temperature for solid and liquid precipitation is common for all the models and equal to 0.5 °C. No corrections of precipitation or temperature are allowed. The snow simulations are validated against observed snow water equivalent (SWE) and against satellite derived snow-covered area (SCA). SeNorge and DDD_EB perform best with respect to both SWE and SCA suggesting model structures suited for describing snow conditions at ungauged sites and for a changed climate.

You do not currently have access to this content.