Abstract

Direct discharge measurements during flood events can be challenging from a technical as well as from a safety point of view. Therefore, flood discharges are often estimated by extrapolating a rating curve. Extrapolations far outside the range of the directly measured discharges are common, although the associated errors can be large. In this article, a novel method to determine suitable stage measurement locations and derive rating curves using a hydraulic scale model is presented. A hydraulic scale model for a natural gauging station site is produced with a computer numerical control technique, making a detailed representation of the prototype topography and bathymetry. The site is characterized by a complex geometry, and the results of the scale model study reveal that the current location of stage measurement is not suitable for determining the rating curve for high flows. The scale model is used to identify potential locations for future stage measurements, and a flood rating curve is constructed based on field measurements for low flows and scale model data for high flows. The study shows how hydraulic scale modelling can be used to provide more reliable rating curves for large discharges and evaluate new or existing gauging stations located at sites with challenging measurement conditions.

You do not currently have access to this content.