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The effect of triangular excess hyetographs on catchment area runoff process is 
investigated, thereby fixing the precipitation time. The approach accounts for 
the kinematic wave theory and allows a discussion of arbitrary hyetograph 
shapes. The results are compared with these originating from a uniform excess 
rainfall and underline the importance of proper account for the hyetograph 
shape. 

Introduction 

The classical approach to the rainfall-runoff process is to consider a uniform pre- 
cipitation distribution over a time lapse t,, Consequently, neither local nor tempor- 
al effects of the rainfall load on the resulting runoff are accounted for. For relative- 
ly small catchment areas the local distribution of the rainfall intensity may be 
overlooked. However, as has first been outlined by Huff (1967), its time distribu- 
tion is of more or less triangular shape in most of the cases (single-peaked hyeto- 
graphs), of which the peak intensity is located at the first or second quartile of the 
complete rainfall duration, t,; provided t, has the order of 2 to 4 hours. Evidently, 
these rainfalls may provoke heavy storms, while longer events have lower peak 
intensities (Raudkivi 1979). 

Although various design hyetographs have been proposed in the past (Raudkivi 
1979), their effect on the resulting hydrograph is not yet systematically investi- 
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gated. In order to study the significant features of a time-dependent excess hyeto- 
graph, a simple rectangular catchment area of length x will be considered. Accord- 
ing to Hager (1984b), its topography and the roughness characteristics may be 
approximated using appropriate averages. To this end, let So be the average 
bottom slope and K=Yn the corresponding average roughness coefficient accord- 
ing to the Manning-Strickler formula. Furthermore, the following considerations 
include only excess rainfall hyetographs, p=p(t) of which the precipitation time t, is 
fixed. The simplest model hyetograph allowing a rather arbitrary shape variation 
accounts for a triangular time distribution (see Fig. 1 later). If time to peak is 
denoted by t*, the ratio t=t*lt,, may alter between the limits O<z<l. It is simple to 
demonstrate that the corresponding uniform hyetograph with equal precipitation 
time t, has an intensity p,=p*/2. This curve is shown as dotted in line in Fig. 1 

The first problem to be considered examines hydrographs at various locations 
x>O (x=O corresponds to the highest point of the catchment area), thereby varying 
the hyetograph shape parameter t for fixed properties of the catchment area (K, 
So) and the excess hyetograph (p*,t,). Results allow a discussion of the effects of 
excess rainfall time-distribution on the runoff characteristics with respect to the 
considered reach. These results can be of particular interest when applied on more 
complex hydrological systems. 

The second problem considers the total rainfall height (in m) as independent of 
space and time and analyses the hydrographs at various locations of the catchment 
area in terms of variable precipitation time and hyetograph shape. The results are 
again compared with the usual approach according to Henderson and Wooding 
(1964). The differences of the solutions with respect to the hydrograph peak quan- 
tities and the hydrograph shapes are discussed in detail and allow general recom- 
mendations regarding the choice of the excess rainfall hyetograph. 

Hydrographs Resulting from Constant Time of Precipitation 

Analysis 
Given a catchment area of average bottom slope So, average roughness coefficient 
K and length L. The longitudinal coordinate is denoted by x, and x=O corresponds 
to the higest point of the reach. The continuity equation balances the mass transfer 
and reads according to Raudkivi (1979) 

in which h is flow depth, q discharge per unit width, p excess precipitation and t 
time. In overland flows the governing conditions for the kinematic wave theory as 
given by Hager (1984a) and Raudkivi (1979) are usually fulfilled, such that the 
dynamical flow equation reduces to the pseudo-uniform flow condition 
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in which Sf is the frictional slope. For fully turbulent flow as may appear under 
heavy excess rainfall, this latter quantity can be expressed using the Manning- 
Strickler flow formula 

K=lln being the roughness coefficient. 
The usual procedure for overland flow computations is to assume excess precipi- 

tation independent of time and space, whence by prescribing the function p=p,, in 
which index 'u' indicates uniform precipitation during the precipitation time t,, 
However, as has been outlined by Huff (1967) among others, the effective precipi- 
tation and thus also the excess rainfall depend significantly on time t. Therefore, it 
is interesting to explore in more detail the effect of time dependent excess rainfall 
on the resulting hydrograph at the catchment area outlet, thereby fixing the catch- 
ment area geometry (L, So), the roughness coefficient K, and the precipitation 
characteristics (p*, t,) in which p* denotes the precipitation peak. The simplest 
approach accounts for a linear variation of the function p(t). For relatively small 
catchment areas, spatial effects of the excess rainfall may furthermore be over- 
looked, so that p=p(t)  only. The model hydrographs, plotted in Fig. 1, can be 
represented as 

It will be advantageous to introduce the following scalings 

Fig. 1. Model excess hyetographs, P(T) 
for fixed time of precipitation, con- 
stant maximum peak precipitation 
but varied time to peak. (...) uni- 
form excess hyetograph. 
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in which quantities marked by (*) are peak quantities. As is seen from Fig. 1, p *  
remains constant for all shapes of hyetographs, provided the precipitation time is 
fixed. It is further interesting to note that the precipitation intensity of the uniform 
excess rainfall is given by pu=p*/2, thus P=2P if P=plp,. 
Let 

then Eqs. (1) to (3) transform into (Hager 1984a) 

in which 

t=t*lt, will be the parameter to be varied in the present approach. It accounts for 
the time distribution of excess rainfall and has the domain O < t < l .  For uniform 
precipitation, Eq. (8) must be modified to read 

Eq. (7) is a first-order, non-linear partial diffential equation for the sought dis- 
charge Q as a function of space and time, Q=Q(X, 7'). It must be solved by 
prescribing an initial and a boundary condition. Evidently, discharge (and flow 
depth according to Eq. (3)) vanish at the highest point of the reach, whence 
Q(X=O, 7')=0. For an initially dry catchment area (or if maximum discharge is 
much higher than the baseflow), discharge and flow depth initially also vanish, thus 
Q(X, T=O)=O. These conditions are usually imposed in problems encountered in 
overland flow, see Woolhiser (1975). 

Let us now consider the rising hydrograph, for which excess precipitation is given 
by Eq. (8a). According to the method of characteristics (Abbott 1966), Eq. (7) may 
equally be expressed as the system 

Equating the left and the right hand sides yields upon integration 
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in which To is the constant of integration. 
The characteristics curves on which the above solution is valid can be evaluated 

by the left and center part of Eq. (10). However, except for the case To=O, the 
integral 

subject to the condition X(T=To)=O, can only be solved numerically. The result 
for To=O is 

Once time T=z has passed, the excess rainfall intensity must be modified according 
to Eq. (8b). Inserting the respective term into the right hand-side of Eq. (7) then 
yields for the second portion of the rising hydrograph 

in which the conditions Q(T=t)= {(T~-T~)/.C)~" and Q(T= To)=O, respectively are 
inserted. 

The locii on which Eqs. (14) hold are again evaluated by the left and center 
portions of the characteristic equation, namely 

thereby considering the conditions X(T=z)=Xl and X(T= To)=O, respectively, in 
which X,=X(T=z, To) according to Eq. (12). 

Finally, for D l ,  the above relations must be modified by accounting for'the 
excess rainfall according to Eq. (8c). The receding hydrograph portion is given by 

t r 0 - 1  l 2  
Q =  [ {along X E X 2  t $ Q 2 1 5 ( ~ - 1 )  f o r )  T ( T o  ( 1  ( 1 6 )  
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Fig. 2. Intermediate results of the method of characteristics with respect to X-T relation for 
various parameters To (right) and Q ( X )  relation for various times T (t=1/2). 

in which X2=X(T=1,To,t). Note that the complete solution Q(X, T )  is matched of 
particular solutions valid in five different domains as specified above, provided t + O  
or t i l .  

Fig. 2 shows a typical evaluation of the above relations for the particular case 
t=1/2. The final result, the hydrograph Q(T)  at various locations X is plotted in 
Fig. 3 for t=0,  t=1/2 and t=1. 

These curves ressemble strongly to the ones presented by Hager (1984a) for a 
continuous hyetograph relation of Maxwellian time-distribution. In the latter case, 
the procedure then becomes much simpler with respect to the division of the 
solution in various domains of validity. 

Discussion of Results 
The hydrographs Q(T) at various locations X according to Fig. 3 reflect partly the 
hyetograph shape. For t = O  time to peak, T,,,=t,,,lt*, is shorter than for t > O .  
Moreover, the hydrographs for the first case are more asymmetric to the left, while 
hydrographs are nearly symmetric for t=l. However, for equal non-dimensional 
catchment area length, X< 1, peak discharge Q,, ,=~, ,~(KS~'~~~'~$'~) is lowest 
for t = O  and highest for t=1. For X>1, peak discharge is always Q,,=l indepen- 
dent of the location X. Fig. 4 represents the non-dimensional peak discharge Q,,, 
as a function of non-dimensional catchment area length, X. Also included in the 
plot is the result for uniform excess precipitation, see Appendix I. The same figure 
shows also non-dimensional time to peak, T,,, as a function of X for various, 
significant t. 

It is now important to note that, at the same location X<1, maximum discharge 
Q,, is significantly lower for a uniform hyetograph than when accounting for the 
hyetograph shape (triangular hyetograph). 

Differences are smallest for t = O ,  while these with respect to z= 1 can be as high as 
35 %. Note too, that these deviations are highest for X ~ 0 . 5 .  Consequently, the 
effective hyetograph shape should always be accounted for, provided XC1. For 
X>1, however, Q,,=l independent of X and t (thereby excluding the case t=0,  
for which Q,, (1)=0.96). 
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1 Fig. 4. 
Hydrograph peak quantities, Q,,, 

(X) (top) and T,,(X) (bottom) as 
functions of hyetograph shape para- 
meter t. Also included as (. . .) are the 
results originating from a uniform hy- 

0 
0 1 2 etograph. 

Fig. 3. Non-dimensional hydrographs Q(T) 
for various locations Xand t = O  (top), 
r= 112 (center), r= 1 (bottom). 

Differences of Tmax(X) for t=0 and the result regarding uniform excess precipita- 
tion are smallest. However, the deviation becomes significant for t = 1, for which 
Tm,=l independent of X. Finally, it should be noted that the overall agreement 
between the hydrographs according to Fig. 3 and Fig. 6 (see Appendix I) is best for 
t=0.5. To the lowest approximation, a nearly symmetrical excess hyetograph may 
therefore be replaced by a uniform excess hyetograph, of which the precipitation 
times are equal but p*=2p,. 

Hydrographs under Constant Excess Rainfall Depth 

The above analysis clearly indicates the effect of the temporal distribution of excess 
rainfall on the resulting hydrograph. However, these results are only partly of 
practical importance, since one will set the precipitation time equal to the time to 
peak of the hydrograph (time of concentration equal to precipitation time). For a 
location X<Xc, in which Xc corresponds to the location at which Tp=Tmax, the 
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precipitation time Tp will be chosen shorter such that T,=T,,,. This, in turn, rises 
the governing uniform and maximum precipitation p*, since p,=t;l. Consequently, 
it will be more realistic to consider the total excess precipitation, H (m), as inde- 
pendent of precipitation time and maximum precipitation intensity. The simplest 
relation for the precipitation depth states that, for a fixed rainfall frequency at a 
particular location, the product of precipitation duration times the uniform excess 
precipitation remains constant, e.g. 

Although not verified for arbitrary rainfall events, this simple relation retains the 
most significant features (the longer tp is, the better Eq. (17) becomes). It was also 
adopted by Henderson and Wooding (1964) in their study regarding the uniform 
precipitation. The present investigation considers in addition the excess rainfall 
time distribution, and a comparison with the first solution indicates the effects of 
variable excess rainfall intensity on the hydrograph. The following analysis will also 
be performed for the identical characteristics of the catchment area, thus consider- 
ing both K and So as independent of space and time. 

Analysis 

The runoff phenomenon on a uniform catchment area characterised by the aver- 
ages of the bottom slope, So, and the roughness coefficient, K, is described by Eqs. 
(1) to (3). If the total excess rainfall height, H ,  remains constant, maximum pre- 
cipitation is p,=Hltp according to Eq. (17). The problem to be investigated consi- 
ders K,So,H as fixed quantities, and studies the solutions q(x,t) for variable t*,tp. 
Consequently, the scalings according to Eq. (16) must be modified except for the 
non-dimensional discharge Q=~/(KS~'~/~HS'~). AS will be shown below it is conve- 
nient to let 

for which Eq. (7) is the governing runoff relation, provided 

Note that the scalings according to Eqs. (7) and (18) are not identified by an index, 
and that the latter apply only to section B. Non-dimensional excess precipitation 
P(T) according to Eq. (19) may further be developed by accounting for Eqs. (4), 
namely 
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Fig. 5. Hydrographs Q(0 for various hy- 
etograph shapes, t, for which the 
time of concentration is equal to the 
precipitation time; (.. .) uniform 

0 precipitation. 
0 1 2 

in which 

The governing Eq. (7) must be solved using the initial condition Q(X, T=O)=O, and 
the boundary condition is Q(X=0,7)=0, in accordance with the problem in section 
A. 

In contrast to the first problem treated in section A, the present investigation 
depends on two parameters, namely t and y. However, the transformations 

and Q=Q yield not only Eq. (7), but Eqs. (20) are also transformed into the 
original Eqs. (8). Consequently, the problem of section B can be solved with the 
solutions according to section A by accounting for the transformations Eq. (22). 

Of particular interest are the solutions which yield Q,,, at the shortest distance 
possible. Fig. 5 has been drawn as a result of Fig. 3 and indicates the hydrographs 
at locations X, for which the precipitation time is equal to the time of concentra- 
tion. It is noted that the usual approach (uniform excess precipitation) and the case 
t=0.5, ressemble most in terms of distance and in the hydrograph shape. However, 
deviations become significant with respect to the hydrograph shape for the two 
remaining cases t = O  and t= 1. 

Regarding the non-dimensional length of the catchment area, the values 
~ ( t=0)=1 .23 ,  ~( t=0.5)=0.96 and X(t=1)=0.71 are found. 

Example 
Consider a catchment area with an average roughness coefficient K=10 m1I3s-', an 
average bottom slope S,=0.05. The precipitation height producing direct runoff 
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amounts to H=0.0114 m (for a fixed frequency and a particular location). Find the 
hydrographs of maximum peak discharge qmax per unit width for a hyetograph of 
symmetrical shape (z=0.5). 

Consider first a precipitation time tp=1,800 s, for which y=10 according to Eq. 
(21). With xmaX=0.96 (see above) the length of the catchment area becomes 
x = ~ ~ ~ , ( ~ S ~ ' ~ t , ~ ~ ~ ) = 1 9 6  m, and the peak discharge is QmaX=1, thus qmax=1.3 11 
(sm). The hydrograph then can be obtained using Fig. 5. 

Consider now tp=90 s, for which y=0.5. With xmaX=0.96, the length of the 
catchment area that yields maximum discharge is only x=9.8 m. However, peak 
discharge is also qma,=1.3 l/(sm), since Q according to Eq. (18c) is independent of 

Y. 
Finally, it is simple to demonstrate that time to peak, pmax in both cases is equal 

to the precipitation time. Both catchment areas thus produce the identical peak 
discharge, although the peak excess precipitations are different. 

Conclusions 

The present investigation analyses the effect of time-dependent excess rainfall on 
the resulting hydrograph of a plane catchment area of constant bottom slope and 
roughness coefficient. Distinction is made between the cases in which the precipita- 
tion time is fixed, and the excess rainfall height is regarded as a constant. The 
results have been obtained using the kinematic wave approach, and the following 
conclusions are immediate: 

1. The effect of the excess hyetograph shape on the peak discharge is only subordi- 
nated if the precipitation time is set equal to the time of concentration. Howev- 
er, deviations between the usual approach (assuming a uniform precipitation) 
and the approach accounting for the excess hyetograph shape become signifi- 
cant, if the catchment area length is smaller than the aforementioned. 

2. Since the rational formula accounts only for the peak discharge, effects of the 
hyetograph shape are insignificant for the final result, provided the condition 
time of concentration equal to the precipitation time is accounted for. 

3. Significant loss of information yields the conventional approach with respect to 
the hydrograph. For equal catchment area length, hyetographs with maximum 
precipitation at the begin of the event (z=O) yield a higher peak discharge and 
time of concentration is shorter than when computed with a uniform excess 
hyetograph. For excess hyetographs of which the peak intensity is at the end of 
the precipitation time ( t= l ) ,  peak discharge and time of concentration are 
longer than when computed with a uniform excess hyetograph. Consequently, it 
is important to account for the excess hyetograph shape whenever the resulting 
hydrograph is sought. 
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Notation 

The following symbols may appear with index 'max' and then refer to peak quantities. Note 
that the notation of sections A and B is sometimes identical, but the meaning may be 
different. 

- flow depth 
- excess precipitation height 
- roughness coefficient 
- excess precipitation 
- peak excess precipitation 
- uniform (average) excess precipitation 
- non-dimensional hyetograph 
- discharge per unit width 
- non-dimensional discharge per unit width 
- bottom slope 
- frictional slope 
- time 
- time to peak of hyetograph 
- precipitation time 
- non-dimensional time 
- constant of integration 
- length of catchment area 
- non-dimensional space coordinate 
- non-dimensional flow depth 
- excess hyetograph shape parameter 
- relative precipitation time 
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Fig. 6. Non-dimensional hydrographs 
Q(T) for various locations X resul- 
ting from uniform excess precipita- 
tion. 

Appendix I: Uniform Excess Precipitation 
The hydrograph Q(X, T )  resulting from uniform excess precipitation according to 
Eqs. (9) under the conditions as assumed herein is given by Woolhiser (1975) 

for equilibrium conditions (for which the time of concentration t, is shorter than the 
precipitation time t,), and 

for partial equilibrium conditions (t,<t,). A typical solution is plotted in Fig. 6. 
This allows the completion of Fig. 4. 
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