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Simulation of snow and soil water content as a basis

for satellite retrievals

M. J. Sandells, G. N. Flerchinger, R. J. Gurney and D. Marks
ABSTRACT
It is not yet possible to determine whether global snow mass has changed over time despite

collection of passive microwave data for more than thirty years. Physically-based, but

computationally fast snow and soil models have been coupled to form the basis of a data

assimilation system for retrievals of snow mass and soil moisture from existing and future satellite

observations. The model has been evaluated against observations of snow mass and soil

temperature and moisture profiles from Reynolds Creek Experimental Watershed, Idaho. Simulation

of snow mass was improved early in the season due to more realistic representation of soil heat flux,

but led to an overestimation of snow mass later in the season. Soil temperatures were generally

simulated well; freezing of the surface layers was not observed but was simulated, which affected

soil water transport. Limited knowledge of the soil lower boundary conditions is acceptable for snow

mass and surface soil moisture retrievals, although improvements are required for more accurate

simulations of deeper soil moisture at this site. Development of a data assimilation framework to

retrieve snow mass and near-surface soil moisture is discussed.
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INTRODUCTION
Snowmelt is a vital resource, with over one sixth of the

world’s population dependent on melt from snow and gla-

ciers for their water source (Barnett et al. ). With a

warming climate, changes are expected to occur in the

rates of snow accumulation and melt resulting in alterations

to the current annual groundwater recharge regime. Nayak

et al. () analysed forty-five years of precipitation, temp-

erature and streamflow data from a northwestern US

mountain catchment to show that whilst the magnitude of

precipitation had not changed significantly, the proportion

of precipitation that was snow had decreased at all

elevations in the watershed. Whether as soil moisture or

snow, monitoring of the water stored in the land surface is

crucial to optimise its use.

Passive microwave satellite observations of the land sur-

face have been made over a range of frequencies since 1978

with the launch of scanning multichannel microwave

radiometer (SMMR). These and subsequent observations
have been used to retrieve snow mass. In 2009, the soil

moisture ocean salinity (SMOS) mission was launched,

and measures the microwave brightness temperature at

1.4 GHz. The accuracy of the SMOS instrument is still

under assessment, but Davenport et al. () have investi-

gated the accuracy of snow mass retrievals based on

earlier work by Chang et al. () and found that snow

mass was overestimated by a factor of 2–3. An alternative

approach for retrievals of snow and soil moisture is to use

data assimilation techniques, where a physically-based

model of the land surface can be used to give an estimate

of parameters with greatest sensitivity, for example the size

of the snow grains. These parameters can then be used to

drive a microwave emission model in order to retrieve the

water content of the land surface from the satellite

observations.

This paper describes the physical basis of the underlying

model that will be used in the data assimilation framework
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currently under development. A computationally efficient

model of the snow was chosen for this purpose, but as it

does not represent the soil explicitly and requires obser-

vations of near-surface soil temperatures (which are

generally not available) to drive the model, it was coupled

with a physically-based model of the soil. Soil temperature

can have a critical influence on the establishment of the

snowpack early in the season, and can lead to biases in

the snow mass throughout the season, as is shown in this

paper. Unfortunately the effect of soil heat flux on the devel-

opment of the snowpack has been rather overlooked to date,

although many studies have looked at the effect of snow on

the soil (e.g. Zhang ). Male () indicated that the soil

heat flux, whilst small, can have a significant effect cumulat-

ively over a season. Despite this, the soil heat flux has been

treated as a constant in some models (Brun et al. ) or

neglected (Liang et al. ).

An evaluation of the coupled and uncoupled model

against field observations of snow mass and soil temperature

andmoisture profiles is presented in this paper. One key ques-

tion in the use of models in data assimilation is how well the

model performs when very little prior information is known

about the land surface. Here, the hypothesis is that given a

deep enough lower boundary in the soil, the boundary con-

ditions do not affect the soil temperature and moisture at

the surface and near-surface. This hypothesis has been

tested and errors in the simulations from uncertainties in

the soil lower boundary condition are presented. Finally, for-

mation of the data assimilation framework is discussed.
Table 1 | Root Mean Squared Differences between simulated and observed snow mass

from the snow pillow for periods where snow was observed, and from estab-

lishment of snowpack to peak SWE. Different SHAW limits represent

dewpoint temperature thresholds above which precipitation is assumed to

be rain.

Model
RMSD (mm)
(snow period)

RMSD (mm)
(to peak SWE)

SNOBAL 30 17

SNOBAL-SHAW 49 44

SHAW (0 WC limit) 74 19

SHAW (0.5 WC limit) 74 40
METHODS

To form the Snow-SVAT (Snow-Soil-Vegetation-Atmosphere

Transfer) scheme to be used in the data assimilation system,

a physically-based, but computationally simple, snow model

was chosen and coupled with a physically-based multi-layer

soil model. In this section, the physics behind the snow and

soil models is presented, and the mechanism of coupling

between the models is discussed. Field data used to test

the model and field site characteristics are described. This

paper addresses the question of how well the lower bound-

ary conditions need to be known, so the approach of this

study is also outlined in this section.
://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
Snow model: SNOBAL

The dual-layer snow model chosen to form the data assimi-

lation system is SNOBAL (Marks & Dozier ; Marks

et al. ). The snowpack is represented by two layers: a

thin surface layer where the surface energy exchanges

occur, and a thicker base layer that contains the bulk of

the snow. Energy balance for the snowpack is given by

Equation (1), where ΔQ is the change in snowpack energy

(this results in a change in temperature if the snow is

below freezing, or a change in phase if the snow is at the

freezing point), Snet is the net radiative flux (solar and ther-

mal), H and LvE are the sensible and latent heat transfers,

G is the soil heat flux and M is the heat advected by precipi-

tation.

ΔQ ¼ Snet þH þ LvEþGþM (1)

Forcing data are derived from meteorological measure-

ments of downwelling solar radiation (R↓), thermal

radiation, wind speed, air temperature and humidity. At pre-

sent, reflected solar radiation (R↑) is calculated prior to the

simulation from Equation (2), where α is the albedo. Separ-

ate albedos are calculated for the visible and near-infrared

frequencies (Equations (3) and (4)), and 48% of the incom-

ing solar radiation is assumed to be in the visible part of

the spectrum, which is consistent with field observations

at a ridge site between November and May by Marks &

Dozier (; Table 1).

R ↑¼ αR ↓ (2)
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αvis ¼ αmax
vis � 0:002r1=2 (3)

αnir ¼ αmax
nir × exp½−02123r1=2� (4)

Maximum albedos for visible (αvis
max) and near-infrared

(αnir
max) are assumed to be 1.0 and 0.85447, respectively. r is

the effective grain radius, which is subject to growth

between precipitation events. Snow ageing, or the change

in radius, is calculated from functions derived from Dozier

et al. () with grain growth effects on broad-band reflec-

tance reported in Marshall & Warren ().

Turbulent transfer of sensible and latent heat is esti-

mated from measurements of wind speed, temperature and

vapour pressure at a single height, through calculation of

the Obukhov stability length, as described by Marks &

Dozier (). This method was chosen because it proved

to be the most numerically stable, particularly for high

wind speed conditions over snow. A roughness value of

3 mm was chosen for the smooth snow surface for the simu-

lations presented in this paper, as this parameter has been

used in other simulations and we have chosen not to cali-

brate the model further. The impact of the uncertainty in

turbulent transfer parameters on the energy balance is

small over snow as the sensible and latent heats are gener-

ally opposite in sign (Marks & Dozier ). Soil heat flux

is determined from discretisation of the heat conduction

equation, which results in Equation (5), where k is the ther-

mal conductivity, T is the temperature, Δz is the thickness of

the layer, and subscripts s and g represent the snow and soil

(ground), respectively.

G ¼ 2kskg Tg � Ts
� �

ksΔzg þ kgΔzs
(5)

Measured precipitation data are also used as forcing data.

The proportion of snow and rain, and density of the freshly

fallen snow is determined from the dewpoint temperature,

according to the relationships given in Table I of Marks et al.

(). Densification of the snow cover is simulated, using

the density-time curve given in Equation (6), where ρs is the

snow density, t is time in seconds, ρgravs,max is the maximum den-

sity due to compaction by gravity (assumed to be 350 kg m–3)
om http://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
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and τ is a constant that represents the time taken for half the

maximum density to be reached (assumed to be 10 days).

Additionof fresh, lower density snow is accounted for by recal-

culating the position along the time-density curve.

ρs tð Þ ¼ ρgravs;max

1þ τ=t
(6)

Under melt conditions, liquid water contributes to the

densification process, and this is simulated according to

Equation (7), where ρmelt
s,max is the maximum density from

melt processes (assumed to be 550 kg m–3), β is an empiri-

cally-derived parameter that controls the rate of

densification (assumed to be 0.4), and Β is the ratio of the

mass of liquid water added to the snow from melt and rain

to the mass of the snowcover.

Δρs ¼
ρmelt
s;max � ρs
1þ β=B

(7)

SNOBAL is computationally efficient, has been tested

extensively and has been used to simulate the areal

depletion of snow in a semi-arid mountain basin (Winstral

& Marks ), so is suitable for incorporation in the data

assimilation system.
Soil model: SHAW

Inorder to provide soil temperatures for calculation of the soil

heat flux and to form the basis of a soil moisture retrieval

system, a multilayer soil model was chosen to couple with

SNOBAL. The model selected is the Soil Heat and Water

model (SHAW). SHAW (Flerchinger & Saxton ) was

designed specifically to simulate the freezing and thawing of

the soil and has a physical basis, so is a good candidate for

coupling with SNOBAL. Although SHAW contains a veg-

etation component, a snow component and is capable of

simulating the transport of solutes, these components are

deemed to be surplus to requirements for inclusion in the

data assimilation system and have not been implemented in

this application. SNOBAL was used in lieu of the multi-

layer snowmodel of SHAWbecause of its computational effi-

ciency. Similar to the snow model, SHAW is based on



723 M. J. Sandells et al. | Simulation of snow and soil water content as a basis for satellite retrievals Hydrology Research | 43.5 | 2012

Downloaded from http
by guest
on 23 April 2024
conservation equations for mass and energy. An implicit

finite-difference scheme is used to discretise the conserva-

tion equations, which are then solved iteratively with a

Newton–Raphson approach, as described in Flerchinger

(). The energy balance at the soil surface is driven by

meteorological measurements of incoming solar radiation,

wind speed, air temperature, humidity and precipitation.

Although downwelling thermal radiation is simulated in

SHAW, for this adaptation measurements are used as forcing

data to be consistent with the SNOBAL driving data.

Additionally, the rain/snow threshold temperature in

SHAW has been adapted for comparisons in this paper.

Here, dewpoint temperature rather than the physical temp-

erature is used, and threshold limits of 0W C and 0.5 WC have

been considered. These are not directly comparable with

SNOBAL, which assumes mixed rain/snow precipitation

for dewpoint temperatures between �0.5 and 0.5 WC, but is a

good approximation.

Soil water mass conservation is given by Equation (8),

where the terms are the net liquid flux, net vapour flux,

source/sink (U) term, change in liquid content and change

in ice content. K is the hydraulic conductivity, z is the soil

depth, ρl and ρi are the densities of water and ice, qv is the

vapour density of air voids, θl and θI are the volumetric frac-

tions of liquid and ice, and t is time. The matric water

potential, Ψ, is calculated from the liquid water content,

from Equation (9), where the air entry potential (Ψe) and

the pore-size distribution index (b) are required as input par-

ameters, and the saturated water content (θs) is defined from

the bulk density of the soil (another input parameter).

@

@z
K

@Ψ

@z

� �
þ 1

� �
þ 1
ρl

@qv
@z

þU ¼ @θl
@t

þ ρi
ρl

@θi
@t

(8)

Ψ ¼ Ψe
θl
θs

� ��b

(9)

Infiltration of liquid water into the soil is calculated

using the Green-Ampt equation (under the assumption of

zero matric potential at the wetting front), and redistribution

of infiltrated water is accomplished through discretisation of

the Richardson equation. A full description of the model is

given in Flerchinger ().
://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
Coupling between SNOBAL and SHAW

SNOBAL and SHAW are linked through the energy and

mass balances. Soil temperature calculated by SHAW is

used to determine the soil heat flux (Equation (5)), which

affects both snow and soil temperatures. Outflow from the

snowpack is used to provide the upper boundary condition

for the solution of the SHAW mass balance. Although

SHAW calculates the temperature of the soil surface, the

temperature at a depth of 30 cm is used to determine the

soil heat flux. This is not ideal, as it smears the temperature

gradient across the snow – soil interface, but a necessary

compromise as the structure of the two models are not com-

pletely compatible. This is discussed later in the paper. For

calculation of soil heat flux, soil thermal conductivity (kg)

in SNOBAL is represented by a constant value (kc)

with an empirical correction for vapour diffusion effects

(De is an effective diffusion coefficient), as given by

Equation (10).

kg ¼ kc þ LvDeqv (10)

The default value of kc in SNOBAL was reduced from

the moist sand value of 1.65 J m–1s–1k–1 to the dry sand

value of 0.3 J m–1s–1K–1 so that kg was similar in magnitude

to the SHAW soil thermal conductivity (which is derived

from the DeVries method).

Hourly meteorological data are used to drive the model,

although the computational timestep is subdivided as is

needed for computational stability for thin layers. The subdi-

vided timesteps and mass thresholds can be specified, but

here the default values were used, where the timestep

decreases from hourly to 15 minutes when the mass of a

layer is <60 kg m–2, and to 1 minute timesteps when a

layer mass is <10 kg m–2. The two models have been loosely

coupled, where the soil mass and energy balances are deter-

mined at the end of the timestep for the snow model, i.e. the

snow properties are updated for the change over the hour

first, then soil properties are updated. Although this means

that the soil temperature used to compute the soil heat

flux may be lagged by up to an hour, the mean magnitude

of difference in measured temperature at a depth of 30 cm

in the soil is 0.01 K. Whilst rigorous coupling of the
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models, where the mass and energy balances of the snow

and soil are solved simultaneously is more physically realis-

tic, the increase in computational expense required to do

this is not justified for the application for which the model

is designed.
Figure 1 | Soil lower boundary conditions for (a) temperature (T) and (b) soil moisture

(SM). Standard (std) conditions were used to evaluate the model and equal the

measurements (so are overlain in this plot), except SM was limited to a

maximum of 0.5 m3/m3 (and is overlain by SM_max). Min, mean and max

conditions were used to test the model sensitivity to the lower boundary

conditions.
Evaluation of coupled model and lower boundary
conditions

The coupled model has been evaluated against measure-

ments of snow water equivalent (SWE), soil heat flux, and

profiles of soil temperature and moisture at a point. The

site chosen was the Reynolds Mountain East catchment in

Idaho, USA, from 1st October 2005 to 30th June 2006.

This site was chosen because of the high quality of data

and the availability of concurrent snow and soil data at

the same location. SWE was measured with a snow

pillow. Although difficult to quantify a precise error due to

differences in sample location and sampling techniques,

the uncertainty associated with the snow pillow measure-

ments is estimated to be approximately ±5%. Additional

errors are incurred for shallow snow (SWE <100 mm),

where solar penetration through the snow and the vapour

barrier at the snow base result in diurnal melt – freeze

cycles and poor physical contact between the snow and

instrument. The pressure transducer is also sensitive to

temperature fluctuations in shallow snow. As the snowpack

increases in mass, these effects are minimised.

Soil heat flux was measured with two Hukseflux heat

flux plates installed 6 cm deep within the soil. Soil tempera-

ture and moisture were measured at 3, 15, 30, 52, 78 and

97 cm with Hydraprobes. The accuracy of the temperature

measurements is dependent on the temperature, but is

±0.2 WC around 0 WC. The uncertainty in the soil moisture

measurements, which have been determined from the

dielectric constant measurements with Equation (11) (from

Seyfried et al. ), has been found to be 0.02 m3/m3,

where θ is the volumetric soil water content and εr0 is the

real part of the dielectric constant.

θ ¼ 0:109
ffiffiffiffi
ε0r

p � 0:179 (11)

These measurements at different depths in the soil were

used to define soil nodes at 0 cm, 3 cm, 9 cm, 15 cm, 30 cm,
om http://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
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50 cm, 80 cm and 1 m. Measurements of the temperature

and moisture at 97 cm form the lower boundary conditions

for the model, and are shown in Figure 1 (T_meas for the

temperature in Figure 1(a) and SM_meas for the moisture

in Figure 1(b)). These sensors are all located at a point

that has a low elevation in the basin. Bathurst & Cooley

() hypothesised different representations of the sub-

surface flow and soil permeability in this basin and

found that rapid sub-surface drainage channels best

explained the observed hydrographs. This hypothesis is con-

sistent with a large increase in observed soil moisture at the

lower boundary in this dataset, as shown by Figure 1(b).

For global retrievals of snow mass and soil moisture, soil

parameters and lower boundary conditions are unlikely to

be known. In this paper, we address the question of how

well the lower boundary temperature and moisture need to
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be known by assuming that either the mean is known (ana-

logous to climatology inputs), or the minimum or maximum

(analogous to a single point measurement). Figure 1 shows

the lower boundary scenario for all simulations, including

the standard model runs where the boundary conditions

are known. As the maximum measured soil moisture is

higher than is physically possible for the model parameters

(the measured moisture is larger than the pore space in

the soil), the lower boundary soil moisture is limited to

0.5 m3/m3, which is used as the upper limit of permissible

soil moisture in the SMOS mission. Results from the simu-

lations are presented in the following section.
RESULTS

Model evaluation

Evaluation of the coupled model against SWE is shown in

Figure 2. SWE is the depth of water that would result if

the snow melted, and is synonymous with snow mass.

Figure 2 illustrates the simulation of SWE for the uncoupled

SNOBAL, the stand alone SHAW and for the coupled

SNOBAL-SHAW simulations. Root mean squared differ-

ences (RMSD) are given in Table 1 for the period where

the snowpack was present according to the observations

(3rd November 2005–16th May 2006), and for the period

from snowpack establishment to peak SWE (3rd November

2005–12th April 2006). RMSD are reduced if the melt

period is excluded, although the difference is small for the

SNOBAL-SHAW simulations. The two precipitation

thresholds chosen for SHAW, as shown in Figure 2, have

a large effect on the SWE. For the lower, 0 oC limit, more

precipitation is assumed to be rain. This reduces the bias

in the SWE and for the accumulation period, SHAW

shows good agreement with the snow pillow observations

(similarly to SNOBAL). At the higher threshold limit,

more precipitation is assumed to be snow. This increases

the overall SWE in the accumulation period and the

RMSD for this SHAW simulation is similar to the RMSD

for the SNOBAL-SHAW simulation.

Compared to the continuous measurements from the

snow pillow, the RMSD for the SNOBAL simulation was

30 mm for the period where the snowpack was established
://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
in the observations. For the coupled SNOBAL-SHAW simu-

lation, the RMSD was higher (49 mm) due to an

overestimation in SWE from the middle of December until

the middle of the ablation period. This is in contrast to the

SNOBAL simulation, where snow mass was underestimated

early in the season until the middle of December. Figure 3

shows simulation of SWE more clearly for the initial snow-

pack formation.

Three melt periods have been identified in Figure 3,

where the rate of observed snow melt has not been captured

adequately by the model. Early in the season, diurnal fluctu-

ations occurred in the observed snow mass, which are a

result of shallow snow problems (as discussed in the

methods section). In late November (period A), the obser-

vations do not show significant melt. SWE simulated by

SNOBAL was reduced from 52.2 mm (13th November) to

24.5 mm (25th November). Melt losses simulated by the

coupled model in this period were less, and SWE was

reduced from 69.5 to 61.2 mm. Observations indicate that

melt occurred in early December (period B), although this

was not simulated by SNOBAL nor the coupled SNOBAL-

SHAW model. In late December (period C) melt was

observed and simulated, although the rate of melt was

underestimated by similar amounts in both models. The

differences between simulated and observed SWE at the

end of period C generally set the biases in the two models

until around maximum SWE. Differences between the

SNOBAL and SNOBAL-SHAW simulations arise from the

soil heat flux, which primarily result from changes in

the soil thermal conductivity and the soil temperature.

Soil heat flux simulated by SNOBAL, SNOBAL-SHAW

and SHAW is shown in Figure 4 and compared to the mean

of the measurements from the two heat flux plates. For

SHAW, the 0.5 WC rain/snow precipitation threshold simu-

lation was chosen as it was most similar to the SNOBAL-

SHAW simulations. Although the heat flux plates were at

a soil depth of 6 cm, the simulated soil heat flux from

SHAW was comparable to the observations. Soil heat flux

simulated by SNOBAL-SHAWwas slightly greater in magni-

tude and more variable than that simulated by SHAW. The

heat flux simulated by SNOBAL was larger than that simu-

lated by SNOBAL-SHAW. As the snowpack became deeper,

the soil heat flux was reduced to a near-negligible value,

although this occurred later in the SNOBAL and



Figure 2 | Comparison between simulated and observed snow mass for SNOBAL, SHAW and the coupled SNOBAL-SHAW model. SHAW has been adjusted to ingest similar forcing data to

SNOBAL and SNOBAL-SHAW, although two different dewpoint temperature limits of 0 and 0.5
W

C have been chosen to differentiate between snow and rain precipitation events.
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SNOBAL-SHAW simulations of the snow – soil interface

than in the observations at a depth of 6 cm.

Figure 5 illustrates the change in soil moisture and temp-

erature at different depths in comparison to Hydraprobe

observations. Initialisation of the snowpack occurs at the
om http://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
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point where the soil surface temperature drops to zero.

Although the diurnal dynamic range of surface temperature

(3 cm) and near-surface temperature (15 cm) is larger than

observed during snow-free periods, warming and cooling

trends in the simulations are consistent with the



Figure 3 | Simulation of snow water equivalent during establishment of snowpack. Three

periods (A, B, C) are shown where rate of snow melt is not represented

accurately.

Figure 4 | Comparison between the mean of two sets of measurements from Hukseflux

heat flux plates (HF Mean) and simulations of soil heat flux from SNOBAL,

SNOBAL-SHAW and SHAW (where precipitation is assumed to be rain if the

dewpoint temperature is above 0.5
W

C). Positive heat flux represents energy

transfer into the snow.
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observations. Deeper in the soil, there is also a warm bias in

the snow-free periods, and observed cooling dips in the

observations at the end of the season are also simulated at

all depths. For the period with an established snowpack,

simulated soil temperatures were generally in good agree-

ment with the observations at all depths. RMSD for the

snow-free and established snowpack periods are given in

Table 2 and range from 0.8 to 5.3 WC (snow-free) and 0.3 to

1.3 WC (snow present), with the larger errors in the soil sur-

face layers. However, some freezing of the soil was

simulated to a depth of 9 cm but was not observed,

suggesting that Equation (5) overestimated heat flux from

the soil to the snowpack. Consequently, this has an impact

on soil moisture, which is also shown in Figure 5.
://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
Wetting of the surface is simulated and observed in the

last week of October and the first week in November. Infil-

tration into the near-surface soil at 15 cm is simulated in the

second to third week of November, which is consistent with

the observations. However, the observed wetting of the soil

surface on the 25th November was not simulated. This

occurred as a result of simulated freezing in the surface

and near-surface soil. Figure 6 indicates the increase in ice

content for the 3 cm soil depth, along with the additional

0 and 9 cm soil nodes used in the model but not validated

because observations were not made at these soil depths.

Soil freezing was not simulated at a soil depth of 15 cm.

Conversion of liquid soil moisture to ice at the 3 cm depth

prevented infiltration to the 15 cm depth in the simulations.

Therefore, the observed increase in soil moisture at 15 cm

on the 25th November was not captured by the simulations.

As the soil surface thawed from the 19th December

onwards in the simulations, moisture was released from

the ice, shown by increasing 3 cm soil moisture in Figure 5.

However, by this stage the lower soil layers were saturated

in the simulations, so the surface moisture did not infiltrate

and drain to the lower layers. As a result, the simulated 3 cm

soil moisture was higher than the observed values.

Saturation of deep soil in late December occurred in the

observations. Figure 7 shows initial saturation at a depth of

1 m early on the 22nd December. The wetting front then

propagated upwards through the soil over the course of

the day. Snow meltwater infiltrated the soil on the 21st

December, to a depth of 15 cm on the 22nd. This observed

behaviour was also captured by the model, as shown in

Figure 5, although propagation of the wetting front was

slower in the simulation. Saturated soil moisture was simu-

lated well at depths of 15 and 30 cm, but the model

cannot simulate the extreme soil moistures observed at

50 cm, 80 cm and 1 m due to insufficient void space in the

simulated soil matrix.

Model sensitivity to lower boundary conditions

The previous section demonstrated how well the SNOBAL-

SHAW coupled model is able to simulate SWE and profiles

of soil temperature and moisture, given well specified lower

boundary conditions, and also highlighted limitations of the

model. This simulation is henceforth referred to as the



Figure 5 | Comparison between simulated and observed soil temperature (T) and soil moisture (SM) at different depths.

Table 2 | Root mean squared differences (RMSD) for soil temperatures at different depths,

during snow-free periods, and the period where there is an established snow-

pack (3rd November 2005–16th May 2006).

Depth (cm) RMSD (WC) (snow-free) RMSD (WC) (snow)

3 5.3 1.3

15 3.0 1.1

30 2.4 0.8

50 1.9 0.7

80 0.8 0.3

Figure 6 | Ice content simulated in surface and near-surface soil.
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‘standard’ simulation, in which both the temperature and

moisture conditions at the lower boundary vary in time in
om http://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf

4

accordance with the observations. In this section, the

effect of limited knowledge of the lower boundary con-

ditions is examined, separately for the temperature and

moisture conditions and also if both are poorly known.



Figure 7 | Measured soil moisture changes at different depths over a 3-day period in

December 2005.
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Results from these simulations are compared to the standard

simulation, and to the observations of temperature and

moisture at different depths in the soil. For all these scen-

arios, the impact of the lower boundary condition on the

SWE is small (RMSD changes from 49 mm to between 43

and 56 mm). Uncertainty in the lower boundary tempera-

ture had the greatest effect, but with no discernible change

in shape in the SWE graph, these results have not been

shown.

Figure 8 shows the impact of a poorly known lower

boundary temperature, assuming that the soil moisture is

well known. At the lower boundary, the minimum, the

mean or the maximum soil temperatures were used for the

simulations. Results were compared to the ‘standard’ simu-

lation, where the temperature was fully specified, as well

as to the measured values. At the surface, only the maximum

temperature scenario had a significant effect, with the 3 cm

soil temperature reaching a maximum of 5.6 WC. At greater

depths, application of a maximum temperature lower

boundary condition also had the greatest effect, although

the 80 cm soil temperature simulated with the minimum

temperature also deviated from the standard simulation

and measurements in the first three months of the simu-

lation. Uncertainty in the lower boundary condition had

limited impact on the soil moisture at depths of 30 cm and

greater. At the soil surface (3 cm), the maximum and mini-

mum temperature lower boundary conditions affected the

duration of frozen soil. In the maximum temperature case,

the soil thawed earlier than in the standard simulation.

For the minimum temperature scenario, thawing of the

soil at a depth of 3 cm was prolonged and the soil moisture
://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
did not reach saturation until the end of April. This in turn

influenced infiltration to the 15 cm layer, and simulated

soil moisture at 15 cm is sensitive to the lower boundary

temperature condition as a result of the freeze/thaw state

of the layers above.

Figure 9 shows how well profiles of soil temperature and

moisture may be simulated given good knowledge of the

lower boundary temperature but poor knowledge of the soil

moisture at the lower boundary. Soil temperatures are rela-

tively unaffected by the soil lower boundary moisture.

However, soil moisture at all depths is extremely sensitive

to the lower boundary moisture condition. If maximum soil

moisture is applied to the lower boundary, matric potential

results in water flow up through the soil at the beginning of

the season. This also happens to a lesser extent if the mean

soil moisture is applied, although at a slower rate than for

the maximum soil moisture case. At a depth of 3 cm, the

differences are small between the standard simulation, the

minimum and the mean soil moisture scenarios for the first

2.5 months of simulation. Use of minimum soil moisture as

a lower boundary condition prevents saturation of the 3 cm

soil surface layer, and the simulation gives good agreement

with the observations for the period where a snowpack is

established. However, the minimum moisture lower bound-

ary condition has a dramatic effect on moisture deeper in

the soil. Propagation of the wetting front up from the lower

boundary is not simulated, and soil moisture at depths of

15 cm and greater only become saturated at the end of the

snow ablation period, from infiltration of snow melt water.

Simulations of soil temperature and moisture profiles,

given only mean values for the lower boundary conditions

are presented in Figure 10. Soil temperature is relatively

unaffected by the limited lower boundary conditions, with

the simulated temperatures beginning to diverge from the

measurements at a depth of 50 cm and deeper. Small differ-

ences in soil moisture occur between the completely

specified (‘standard’) and mean-value simulations at 3 and

15 cm. At 30 cm, poor knowledge of the lower boundary

conditions results in reasonable simulations after the wet-

ting front has passed (in late December). Prior to this, the

simulation indicates gradual wetting of the soil at 30 cm,

which is in contrast to the dry nature of the soil at the

start of the season. At 50 and 80 cm, the simulations are a

poor indicator of the state of the soil.



Figure 8 | Sensitivity of soil temperature (T) and moisture (SM) profiles to 1 m soil lower boundary temperature. T_meas and SM_meas are the observed values, and std is the standard

simulation where the lower boundary conditions are known. In all cases the lower boundary soil moisture condition was derived from the time-varying observations.
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DISCUSSION

This paper presents a physically-based model of the snow

and soil that will be used to form the basis of a data assim-

ilation system for retrievals of snow mass and soil

moisture. The model was formed through coupling an exist-

ing snow energy and mass model (SNOBAL) with a multi-
om http://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf

4

layer soil model (SHAW) that solves the mass and energy

conservation equations for the soil. An evaluation of the

simulated SWE shows that the uncoupled SNOBAL model

is better statistically. For this simulation, however, the

SWE from SNOBAL matched the observations closely for

most of the season as a result of processes that occurred at

the start of the season. In an early melt period, where the



Figure 9 | Sensitivity of soil temperature (T) and moisture (SM) profiles to 1 m soil lower boundary soil moisture. T_meas and SM_meas are the observed values, and std is the standard

simulation where the lower boundary conditions are known. In all cases, the temperature lower boundary condition was derived from the time-varying observations.
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snowpack was also shallow, an overestimation of soil heat

flux led to rapid melt in the simulation, and over half the

thin snowpack was lost. Two subsequent melt periods

occurred when the snow was thicker and was driven by

the surface energy balance. For these periods, SNOBAL

underestimated the rate of melt. The net effect of these pro-

cesses is that the snow mass simulated by SNOBAL

matched observations closely from this point and for the

remainder of the season. SHAW coupled with SNOBAL
://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
simulated more realistic soil heat flux and rate of melt for

the first melt period. Similar to the uncoupled SNOBAL,

the rate of melt was also underestimated for two melt

periods driven by surface energy exchanges. The net effect

for the SNOBAL-SHAW simulation is a bias in the simu-

lated SWE until the snow ablation period. This study

highlights the importance of soil heat exchanges early in

the season, whilst the snowpack is becoming established.

As snow is deposited on the soil surface, the soil



Figure 10 | Impact of mean values for soil temperature and moisture lower boundary conditions (mean LBC), compared to simulations where lower boundary values are specified from the

measurements (Standard), and compared to observations (Measured).
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temperature will determine whether the snow melts or is

allowed to settle and decompose. The rate of change

of the snow properties, e.g. crystal size, will also depend

on the soil temperature. Thermal exchanges between

snow and soil must be simulated accurately early in

the season, as differences in snow mass and other snow

properties at this point are carried through until the end of

the season.
om http://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf

4

Coupling SHAW and SNOBAL is straightforward for

the mass balance: snowpack outflow (melt and rain) is

used as a source term at the soil surface. Linking the two

models in the energy balance is more complicated. SHAW

simulates the soil surface temperature (0 cm depth), but

this should not be used to determine the soil heat flux. This

surface temperature represents a very thin surface layer

i.e. Δzg→0, which makes the soil heat flux (Equation (5))
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independent of the soil thermal conductivity and is not phys-

ically realistic. Also, the thermal inertia for a thin soil surface

layer is small compared to the large snow base layer. Heat

exchanges between these two layers would not affect the

temperature of the snow layer significantly, but would

change the temperature of the soil layer to approach that

of the snow. By default, the thin soil surface layer freezes,

which then impacts soil moisture. Addition of a thin layer

at the base of the snow may allow soil surface temperature

to be used to determine the soil heat flux, but is a significant

increase in computational complexity. Global retrievals of

snow mass requires modelling on a global scale, so a more

efficient but less realistic approach was taken here, where

the 30 cm soil temperature was used to link the energy bal-

ance of the snow and soil. This was chosen fairly

arbitrarily as a balance between use of a near-surface temp-

erature, and a large enough distance to avoid problems of

surface freezing.

With this approach, profiles of soil temperature and

moisture have been simulated with a reasonable degree of

accuracy. The dynamic range of temperatures of the surface

and near-surface soil is too high when snow is not present.

This may impact the simulated SWE as temperatures that

are too high or too low may hinder or enhance the accumu-

lation of snow at the initialisation of the snowpack. In these

simulations, freezing of the soil surface was simulated but

not observed, and this affected soil moisture at the surface

and infiltration into the layers below. Once the surface

layers had thawed, liquid water was released for infiltration

into lower layers. Thawing of the soil surface occurred after

the lower layers had already saturated, so water flow was

limited and the moisture content of the upper soil layer

was higher than the observed values.

This is an unusual site, where soil moisture at depth can

flip from extremely dry to extremely wet in the space of a

couple of hours. The maximum observed value of soil moist-

ure at the lower boundary was in excess of the saturation

limit in the simulated soil. Although it is possible to adjust

the soil parameters, we have chosen not to calibrate the

model. Also, the density is a bulk property of the soil, so

takes no account of local heterogeneity such as cracks,

gaps and flow pathways that may contribute to additional

moisture content around the sensor. Equation (11) was

used to retrieve soil moisture from the observed dielectric
://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
constant. This relation is known to vary according to soil

type, so use of this equation may have introduced a bias in

the measured soil moisture.

The high rate of wetting at this site is partly due to its

location in the basin, relatively low in elevation so receives

meltwater from many parts of the basin. Rapid drainage

channels are also suspected to form (Bathurst & Cooley

), which contribute to the high rate of change of soil

moisture at the 1 m depth. To some extent, the model cap-

tures rapid wetting of the layers from the base through

capillary uptake, although the wetting front in the simu-

lations lags behind observations by increasing amounts

higher in the soil profile. In the observations, rapid wetting

of the soil at all depths occurs within a 24-hour period, so

it is likely that lateral drainage is contributing to the large

soil moisture change at all depths, and a 1-D model is not

capable of simulating this process.

Application of the physically-based model beyond the

point scale will mean that the lower boundary conditions

will generally be known rather poorly, if at all. This study

investigated the impact of the lower boundary conditions

on the simulation of profiles of soil temperature and moist-

ure. Limited knowledge of the soil temperature at a 1 m

boundary affected temperatures deep in the soil, but only

had a small effect at the soil surface. The lower boundary

temperature condition did not affect soil moisture except

in the case of frozen soil, where a change in the freeze/

thaw state or proportion of ice in the soil matrix affected

the soil water content and infiltration into lower soil

layers. Soil temperatures are not affected by the soil moist-

ure lower boundary condition. However, the soil moisture

profile is extremely sensitive to the moisture at the lower

boundary, as matric potential is governed by the availability

of water at the boundary. The original hypothesis of this

paper is that the lower boundary conditions do not affect

the surface and near-surface soil temperature and moisture.

Given the effect of even small changes in temperature on the

freeze-thaw state of the soil, this hypothesis is rejected,

whilst noting that the boundary conditions can be chosen

carefully in order to produce reasonable simulations.

In terms of data assimilation, lack of knowledge of lower

boundary conditions is not a problem for retrievals of snow

mass, as the simulation of SWE is relatively insensitive to

the soil temperature and moisture lower boundary.
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However, this may be a problem for soil moisture data

assimilation, where it is hoped that the surface soil moisture

retrieved by satellite, e.g. by SMOS, can be related to moist-

ure deeper in the soil to provide information on soil water

availability for vegetation growth. An in-depth study is

required to investigate how best to represent the soil if it is

essentially unknown. SHAW allows the specification of

different boundary conditions, such as application of a

unit moisture gradient, which limits flow to gravitational

only. This approach was used by Flerchinger et al. ()

to evaluate simulations of surface fluxes and soil tempera-

tures. Unfortunately soil moisture measurements were not

available for evaluation as part of their study. SHAW can

also allow the model to estimate the lower boundary temp-

erature, as used by Preston & McBride (), who found

that the mean difference between observed and simulated

temperatures ranged between –0.1 and 1.6 WC for the upper

1 m of soil. Potentially, simulations could be improved

with these alternative approaches.

Although the uncoupled SNOBAL model statistically

showed better agreement with the measured SWE than the

coupled SNOBAL-SHAW model for the data presented, it

less suitable for the snow mass retrieval system (and

cannot be used for retrievals of soil moisture). SNOBAL

requires knowledge of near-surface soil temperatures,

which will not be available on a global scale. The soil temp-

erature will also govern the temperature gradient in the

snow, which determines the rate of growth of snow grains.

Snow grain size is a crucial parameter that determines the

microwave behaviour of the snow, and must be known in

order to make the snow mass retrievals.

Whilst it is desirable to have a close representation of

physical reality as possible in a model, one of the benefits

of data assimilation is that observations can be used to

alter the model state. For example, retrievals of snow mass

from satellite observations can be used to update snow

mass in the model, therefore the bias in early season snow

mass in the SNOBAL-SHAW coupled simulation should

be removed as part of the assimilation process. Assimilation

of the retrieved snow mass into the snow model can also be

used to correct for processes not simulated by SNOBAL-

SHAW. One example is blowing snow, which can change

mass fluxes and incur additional sublimation losses. Use of

the remote sensing observations to feed back the retrieved
om http://iwaponline.com/hr/article-pdf/43/5/720/370048/720.pdf
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snow mass into the SNOBAL-SHAW model means that

these processes do not need to be simulated explicitly.

Comparisons between the time-series of soil moisture

observations and simulations should help diagnose model

parameters and lower boundary conditions. As an example,

if the simulated dry-down curve of the soil moisture is too

shallow then this may identify deficiencies in the parameter-

isation or indicate too much moisture in lower layers. The

interaction between surface wetness and surface water

input may indicate the freeze-thaw state of the soil and

whether this is represented adequately in the simulation.

Fortunately the soil moisture satellite SMOS measures at

L-band frequency (1.4 GHz), which means it is insensitive

to the snow cover, provided the snow is not melting.

SMOS has potential to be used directly to indicate whether

the soil is frozen or unfrozen (e.g. Rautiainen et al. ),

which in turn provides a temperature constraint in the

model.

For retrievals of snow mass, independent estimates of

snow properties from remote sensing observations will be

used in the data assimilation system to constrain the par-

ameters in the model. Techniques exist to retrieve surface

snow grain size from optical sensors (Painter et al. ).

Once the surface layer is buried by subsequent snowfalls, a

physically-based model can be used to evolve the snow

grains depending on the temperature of the snow and under-

lying soil. Scattering of microwave radiation is most

sensitive to the grain size, so grain size needs to be known

well in order to retrieve estimates of snow mass from passive

microwave observations. Accurate simulation of the soil

temperature is essential for good estimates of the snow

grain size.

Quantitative analysis of model and observation error

such as this is needed to determine the optimum method

of blending the model and observations to get the best esti-

mate of the state of the snow and soil. Once the data

assimilation system have been developed, it can then be

used to monitor changes in the snow and soil moisture.

Dependent on the level of independent remote sensing

data required to constrain the model, it may be possible to

reprocess the historic dataset of passive microwave obser-

vations in order to determine whether snow mass has

been changing over time in a similar manner to other

parts of the Arctic.
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