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An evaluation framework for identifying the optimal

raingauge network based on spatiotemporal variation in

quantitative precipitation estimation

Che-Hao Chang, Shiang-Jen Wu, Chih-Tsung Hsu, Jhih-Cyuan Shen

and Ho-Cheng Lien
ABSTRACT
This study proposes an evaluation framework to identify the optimal raingauge network in a

watershed using grid-based quantitative precipitation estimation (QPE) with high spatial and

temporal resolution. The proposed evaluation framework is based on comparison of the

spatial and temporal variation in rainfall characteristics (i.e. rainfall depth and storm pattern) from

the gauged data compared with those from QPE. The proposed framework first utilizes cluster

analysis to separate raingauges into various clusters based on the locations and rainfall

characteristics. Then, a cross-validation algorithm is used to identify the influential raingauge in

each cluster based on evaluating performance of fitting weighted spatiotemporal semivariograms

of rainfall characteristics from the gauged rainfall to the QPE data. Thus, the influential raingauges

for a specific cluster number form the representative network. The optimal raingauge network is

the one corresponding to the best fitness performance among the representative networks

considered. The study area and data set are the hourly rainfall from 26 raingauges and 1,336

QPE grids for 10 typhoons in the Wu River watershed located in central Taiwan. The proposed

evaluation framework suggests that a 10-gauge network is the optimal and can describe a good

spatial and temporal variation in the rain field similar to the grid-based QPE from two additional

typhoon events.
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INTRODUCTION
Rainfall data are essential in many hydrological analyses

and hydraulic engineering designs, such as frequency analy-

sis, rainfall-runoff analysis, and stormwater drainage design.

For example, the water level used in designing a hydraulic

structure, such as a levee, is estimated by using a rainfall-

runoff model and flood wave propagation model with the

design areal average rainfall hyetograph estimated from

the raingauge network (Wu et al. ). Accurate estimation

in the spatial distribution of rainfall requires a dense net-

work, which entails large installation and operational
costs, but reduces the opportunity of project failure (AI-Zah-

rani & Husain ; Putthividhya & Tanaka ; Adhikary

et al. a, b). The World Meteorological Organization

(WMO ) issued a guideline for recommended density of

raingauges in a catchment based on the physiographic unit

and area of the watershed. For example, 250 km2 per

gauge is suggested for a small mountainous region with irre-

gular rainfall, and for the flat region of a temperate zone. In

addition, a modern raingauge network can provide real-time

estimation and the rainfall forecast resulting from typhoons
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for the early flooding warning operation (e.g. Pandey et al.

; Tsintikidis et al. ; Chen et al. ). The areal

average rainfall hyetographs are commonly designed using

the gauged rainfall data, so they should be affected by the

uncertainties in the measurement. These uncertainties

might be attributed to climatic and geometric factors,

such as the local topography, size of the study area, type

of rainfall, large-scale atmospheric motions and forcing

(e.g. Harris et al. ; Pandey et al. ; Tsintikidis

et al. ). These uncertainties may also result from the

lack of gauges and poor density of the raingauge network.

Thus, evaluating the reliability and applicability of an exist-

ing raingauge network in a watershed is an important issue

in modern hydrological analysis and water resources

planning.

Many investigations have been proposed for evaluating

raingauge networks in various watersheds, and the relevant

resulting concepts can be grouped into two types: (1) geosta-

tistics with semivariogram (e.g. Kassim & Kottegoda ;

Papamichail & Metaxa ; Pardo-Iguzquiza ; Tsintiki-

dis et al. ; Cheng et al. ; Chebbi et al. ;

Putthividhya & Tanaka ; Shafiei et al. ) and (2)

the information entropy method (e.g. Krstanovic & Singh

; Al-Zahrani & Husain ; Chen et al. ; Viveka-

nandam & Jagtap ). Geostatistics is a branch of

statistics focusing on spatial or spatiotemporal data sets

and has been widely applied in hydrological research. The

Kriging method is a group of geostatistical techniques used

to interpolate the value of a random field at an unobserved

location from observations of its value at nearby locations.

In the geostatistics method, each gauge is sequentially trea-

ted as an unobserved location, and its rainfall depth is

estimated by using the Kriging equation. By comparing the

estimations with true observed values, the Kriging error

can be calculated. Recently, a number of advanced methods

have been developed for quantifying the variogram, such as

genetic programming (e.g. Adhikary et al. a, b) and

the artificial neural network (e.g. Teegavarapu ). Even-

tually, the raingauge network associated with relatively

small errors is identified as an optimal network. With

respect to the information entropy method, Shannon’s

entropy proposed a measure of information concept,

which depends on the current level of knowledge or uncer-

tainty and the information entropy for the rainfall at each
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raingauge in the catchment (Shannon ). This entropy

is calculated after all raingauges are reconstructed, and the

one with the maximum entropy is selected as an important

gauge. After that, the optimal raingauge network is com-

posed of all important gauges. A number of investigations

combines the above two methods to determine the spatial

distribution of raingauges in a catchment (e.g. Chen et al.

; Awadallah ).

In addition to the above two methods, Cislerova &

Hutchinson () proposed a redesigning method to ident-

ify the raingauge network based on the statistical

characteristics of random fields. The statistical character-

istics include the covariance and correlation function with

the criterion of maximum admissible interpolation error.

Dymond () established a simple expression equation

for the mean square error in the rain field, i.e. the correlation

between neighboring raingauges and the number of gauges,

to carry out network reduction. Basalirwa et al. () uti-

lized principal component analysis to delineate Uganda

into homogeneous rainfall sub-basins. Then, the representa-

tive raingauge in each sub-basin could be determined based

on the communality index which measures the degree of

association with other gauges in the data set. Yoo ()

combined the sampling error of rainfall calculated from

the gauged data, microwave attenuation measurements

and satellite measurement; and then minimized combi-

nations of the sampling error to determine the optimal

raingauge network. Volkmann et al. () restructured the

raingauge network composed of the gauges and radar-

based grids to optimize the network by comparing the result-

ing flash flood through the rainfall-runoff model. Jung et al.

() developed an evaluation method integrated with the

average inter-gauge correlation coefficients. This method

can find the optimal coverage of rainfall estimation in

accordance with the estimated effective radius. By taking

into account the estimation accuracy of point rainfall at

ungauged sites, Shafiei et al. () assessed the performance

and augmentation of a raingauge network by integrating the

geographic information system framework with the accep-

tance probability concept.

The aforementioned methods mostly focus on the

assessment of the total rainfall amount measured at the

raingauges during specific durations, such as annual rain-

fall depth (e.g. Cislerova & Hutchinson ), monthly
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rainfall depth (e.g. Papamichail & Metaxa ), or cumu-

lative hourly rainfall depth (e.g. Garcia et al. ). In

addition to the rainfall amount, Chebbi et al. () utilized

the parameters of rainfall intensity-duration-frequency for-

mula derived using the rainfall depth of various durations

to determine an appropriate raingauge network. However,

the accurate and reliable spatiotemporal estimations of

rainfall are essential for successfully predicting the catch-

ment responses, such as the flash flood (e.g. Volkmann

et al. ; Wu et al. a, b). Thus, the spatial and tem-

poral distributions of rainfall during a rainstorm event are

important for rainfall-runoff modeling, river routing, and

inundation simulation due to their effect to the accuracy

and reliability of input data. In summary, most investi-

gations discussed the variation in the rainfall amount for

a specific duration at all raingauges in the watershed,

such as the annual rainfall amount, for the water resource

analysis. This rainfall amount obviously varies with the

location of the raingauge, so that it can be defined as a tem-

poral variable. However, there is another important issue in

hydrology analysis, i.e. flood warning during typhoon

events. In general, flood warning could be achieved using

rainfall-runoff modeling with the time series of rainfall fore-

casts (i.e. hyetograph) at all gauges in the watershed. A

rainstorm event can be classified into three rainfall charac-

teristics, i.e. rainfall duration, depth and storm pattern

(distribution of rainfall in time) (see Figure 1) (Wu et al.

). Thus, the storm pattern changes not only with the

location of the raingauge, but also with time. Accordingly,

the storm pattern should be regarded as a spatial and tem-

poral variable. As a result, the spatial and temporal

variation in rainfall should be simultaneously considered

for the evaluation of a raingauge network in a watershed.
Figure 1 | Definition of rainfall characteristics (Wu et al. 2006).

://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
Recently, remotely sensed rainfall products, such as

radar rainfall estimations, have been widely used to pro-

vide information on the spatiotemporal structure of

rainfall because of their large areal coverage and high res-

olution (Mandapaka et al. ). Radar rainfall’s high

spatial and temporal resolution and large areal coverage

fares better when compared with traditional gauged

measurements (Sharif et al. ). Therefore, radar rainfall

estimations are widely used in water resource analysis,

flood forecasting and warning over sparsely gauged catch-

ments (e.g. AghaKouchak et al. ; Zhu et al. ). The

accuracy of radar-based rainfall might be influenced by var-

ious sources of errors, such as an error in the measurement

of the rainfall reflectivity (e.g. Zawadzki ; Austin ;

Piccolo & Chirico ; AghaKouchak et al. ; Abdella

& Alfredsen ; Wu et al. a, b). Nevertheless, its

high resolution in time and space can be used for discuss-

ing and analyzing the varying rainfall trends in time and

space and for simulating the surface runoff distribution

resulting from heavy rainfall events (e.g. Brommundt &

Bardossy ; Atencia et al. ). Several investigations

have taken the radar or satellite grid-based rainfall into

account in order to assess the raingauge network (e.g.

Yoo ; Volkmann et al. ), but they have only

regarded the grid-based rainfall as additional raingauges

in order to identify an optimal network from the combi-

nation of gauges and grids.

Since the radar grid-based data have high spatial and tem-

poral resolution, they should well describe the change in

rainfall in time and space represented in terms of the spatio-

temporal semivariogram. Therefore, this study intends to

treat the radar grid-based data as the reference data set to pro-

pose a framework for evaluating the raingauge network. The

proposed evaluation framework is developed based on quanti-

fying the fitness performance of the spatiotemporal

semivariogram of rainfall characteristics (rainfall depth and

storm pattern) calculated from grid-based and gauged rainfall

data, respectively. In detail, the evaluation would be carried

out by assessing the degree of fitting the spatiotemporal semi-

variograms from the gauged data to that from the radar grid-

based data. It is expected that the resulting fitness performance

can provide helpful information on existing raingauges in the

watershed so as to identify an optimal raingauge network.

The optimal network can describe the variability of rainfall
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in time and space in a similar manner to the grid-based radar

rainfall data.
METHODOLOGY

Basic concept

In theory, rainfall data are regarded as the spatial and tem-

poral variables, so this study attempts to apply the

geostatistics theory to evaluate the quality of the existing

raingauge network. The evaluation is carried out by compar-

ing the variation in gauged and radar rainfall in time and

space. In general, the spatial and temporal variation of

data can be quantified in terms of the spatiotemporal semi-

variogram. Therefore, this study utilizes the gauged and

radar rainfall data, respectively, to calibrate parameters of

the theoretical semivariogram models in order to estimate

the spatiotemporal semivariogram. The resulting spatiotem-

poral semivariograms from the gauged data are compared

based on its fitness performance to those from radar rainfall.

Although the number of raingauges in a watershed can

be decided in advance according to the WMO’s guideline

(1994), it is difficult to identify which raingauges can con-

tribute to the appropriate network. Therefore, this study

first applies cluster analysis to classify the raingauges into

different groups for a specific cluster number according

to the gauge locations and rainfall characteristics (i.e. rain-

fall depth and storm pattern). Cluster analysis groups a set

of objects in such a way that the objects in the same group

(called a cluster) are more similar (in some sense or

another) to each other than to those in other clusters. It

is widely used in many hydrology applications in which

hydrological variables are classified into a number of

groups by the cluster analysis according to their character-

istics (e.g. Wu et al. ; Kahya et al. ; Sawicz et al.

). After that, in order to find the influential raingauge in

each cluster which significantly impacts the variability

of rainfall in time and space, this study employs the

cross-validation algorithm to quantify the contribution of

variation in the rainfall at a single raingauge to the entire

rainfall area.

In detail, all raingauges in the watershed are classified

into several groups using cluster analysis. In each cluster,
om http://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
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a raingauge is randomly selected as the validation gauge.

The remaining raingauges serve as the calibration gauges

in which the associated gauged rainfall data are used in

the calibration of the theoretical semivariogram models.

Subsequently, the iterations of extracting raingauges as the

validation gauges are performed and the corresponding fit-

ness performance indices of the semivariograms for the

rainfall characteristics are calculated, excluding the rainfall

data from the validation gauge. If an excluded raingauge

for a specific cluster results in the worst fitness performance,

this gauge can be defined as the influential one. In other

words, the varying trend of rainfall in time and space from

the gauge network without the influential gauge might

obviously differ from those calculated using the radar rain-

fall. Accordingly, the influential raingauges in all clusters

for a specific number of clusters can form the representative

raingauge network.

The cluster analysis and cross-validation algorithm

should be carried out for various numbers of clusters to

find the corresponding representative raingauge network.

Then, by recalculating the fitness performance with the rain-

fall data from the representative raingauge networks

considered, the resulting optimal network should be the

representative raingauge network in association with the

best fitness performance. The graphic illustration of the pro-

posed evaluation framework is shown in Figure 2 and the

relevant theories and methods used are introduced in the

following.
Spatiotemporal semivariogram model

Theoretical semivariogram model

The spatiotemporal semivariogram model is widely applied

to deal with the spatially and temporally correlated variable

(Gneiting et al. ). The spatiotemporal semivariogram

γst hs, htð Þ is expressed as:

γst hs, htð Þ ¼ 1
2
Var Z xþ hs, tþ htð Þ � Z x, tð Þ½ � (1)

where hs and ht represent the distance and time lag, respect-

ively, and Z(x,t) denotes the spatiotemporal variable at

time t and position x. Table 1 shows some well-known



Table 1 | Definition of semivariogram models and associated parameters

Model γ(h) Range of h

1. Spherical model c
3h
2a

� 1
2

h
a

� �3
" #

0 ≦ h ≦ a

c h> a

2. Exponential
model

c 1� exp
�h
a

� �� �
h≧ 0

3. Gaussian model c 1� exp
�h2

a2

� �� �
h≧ 0

4. Power model cha h≧ 0; 0<
a ≦ 2

5. Nugget model 0 h¼ 0
c h≧ 0

6. Linear model ch h≧ 0

7. Linear-with-sill
model

c
h
a

� �
0 ≦ h ≦ a

c h> a

8. Circular model c
2h
πa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h

a

� �2
s

þ 2
π
arcsin

h
a

2
4

3
5 0 ≦ h ≦ a

9. Pentaspherical
model

c
15h
8a

� 5
4

h
a

� �3

þ 3
8

h
a

� �5
" #

0 ≦ h ≦ a

c h> a

10. Logarithmic
model

0 h¼ 0

c log hþ að Þ½ � h >0

11. Periodic model c 1� cos
2πh
a

� �� �
h≧ 0

Note: c and a denote the sill and influence ranges and h denotes distance (Davis 1973).

Figure 2 | Graphical illustration of concept of the proposed evaluation framework.
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theoretical semivariogram models. These spatiotemporal

semivariogram models have been published to describe the

behavior of spatial and temporal semivariograms, such as

the product of semivariograms (Rodriguez-Iturbe & Mejia

), the integrated product of semivariograms (Dimitrako-

poulos & Luo ), and the product-sum model (De Cesare

et al. , ). Among the above spatiotemporal semivar-

iogram models, the product-sum model can provide a large

class of flexible models and require less constraint symmetry

between the spatial and temporal correlation components

without an arbitrary space-time metric (Gneiting et al.

). This study therefore adopts the product-sum method
://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
to calculate the spatio-temporal semivariogram of Z(x,t).

The concept of the spatiotemporal semivariogram model is

briefly described below.

The product-sum spatio-temporal semivariogram

γst hs, htð Þ is defined in terms of a separate spatial semivario-

grams γs hsð Þ and temporal semivariogram γt htð Þ as:

γst hs, htð Þ ¼ γs hsð Þ k1Ct 0ð Þ þ k2½ � þ γt htð Þ k1Cs 0ð Þ þ k3½ �
� k1Cs hsð ÞCt htð Þ (2)

where Cs and Ct are the spatial and temporal covariances,

respectively, and Cs(0) and Ct(0) stand for sills, which

are defined as the limit values for the semivariograms;

they are generally used as the parameters of theoretical

semivariogram models. k1, k2 and k3 are the coefficients

and they can be computed using the following equation



Figure 3 | Graphical illustration of weighted semivariogram model (Wu et al. 2011a,

2011b).
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(De Cesare et al. , ):

k1 ¼ Cs 0ð Þ þ Ct 0ð Þ � Cst 0, 0ð Þ
Cs 0ð ÞCt 0ð Þ

k2 ¼ Cst 0, 0ð Þ � Ct 0ð Þ
Cs 0ð Þ

k3 ¼ Cst 0, 0ð Þ � Cs 0ð Þ
Ct 0ð Þ

(3)

where Cst(0,0) denotes the sill of the spatio-temporal semi-

variogram and, generally, is adopted as the maximum of

Cs(0) and Ct(0). In addition, this study implements par-

ameter calibration by means of the modified genetic

algorithm method based on the sensitivity to the parameters

(Wu et al. ) with an objective function Fobj as:

Fobj mð Þ ¼ 1
Nds

XNds

i¼1

w hið Þ × γm hið Þ � γo hið Þ½ �2
( )0:5

w hið Þ ¼ Np hið ÞPNds

i¼1
Np hið Þ

(4)

where Nds is the number of distance ranges; Np(hi) is the

number of pairs within the lag h for the ith distance range;

γm hið Þ denotes the estimated semivariogram by themth theor-

etical semivariogram model, and γ0(hi) is the experimental

semivariogram calculated using measured spatial data.

Weighted semivariogram model

In general, a good best-fit theoretical semivariogram model

of a spatial phenomenon is still necessary (Delay & de Mar-

sily ). However, there are often limited data available in

the early stage of geostatistical modeling which results in

considerable uncertainty in the statistical parameters,

including the variogram (Ortiz & Deutsch ). Thus, the

identification and parameter-calibration of the best-fit theor-

etical semivariogram model, and the estimation of spatial

data, become uncertain and unreliable. The uncertainty

probably results in measurement error, equipment failure,

other errors of spatial correlation and so on. Therefore, to

reduce the uncertainty in selecting the best-fit theoretical

semivariogram model and associated parameters, this

study adopts a weighted semivariogram model developed

by Wu et al. (a, b). The weighted semivariogram
om http://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
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model combines results from several selected theoretical

semivariogram models to provide the weighted average of

semivariogram γw(h) by using the following equation:

γw hð Þ ¼
XMsv

m¼1

wsv mð Þ × γm hð Þ½ �

wsv mð Þ ¼ 1=Fobj mð ÞPMsv

m¼1
1=Fobj mð Þ� �

(5)

in which Msv is the number of theoretical semivariogram

models of interest; wsv is the weighted factor; γm(h) denotes

the semivariogram estimated by the mth theoretical model;

andFobj(m) denotes the objective function for themth theoreti-

cal model associated with the optimal model parameters. In

view of Equation (4), the objective function value Fobj
decreases with the error [γm(hi)� γ0(hi)]

2. Accordingly, the

lower objective function value means that the estimated semi-

variogram γm(h) fits better to the experimental one γ0(h).

Namely, the fitness of the estimated semivariogram to the

experimental ones increases. Therefore, this study defines the

weighted factorwsm as a function of the inverseof the objective

function value Fobj. Note that the sumofwsv should be equal to

one. Figure 3 shows a graphical illustration of theoretical semi-

variogram models and the weighted semivariogram model.
Fitness performance indices

In this study, the evaluation of a raingauge network is accom-

plished based on the comparison of the resulting

spatiotemporal semivariograms of rainfall characteristics from
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radar and gauged rainfall data. Thus, the fitness performance

indices, which compare the model on results from various sys-

tems or data resources, should be required. This study applies

the root mean square error (RMSE) to quantify the fitness

degree of spatiotemporal semivariograms of rainfall character-

istics as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NSV

XNSV

i¼1

γw,r xið Þ � γw,g xið Þ� �vuut (6)

where γw,r xið Þ and γw,g xið Þ denote the weighted spatiotem-

poral semivariograms of rainfall characteristics calculated

from the radar and gauged rainfall and NSV is the number of

separation distances defining the semivariogram diagrams.

Note that a small RMSE indicates that an adopted semivario-

gram calculated using the gauged rainfall data is closer to

those using the radar rainfall data. Since this study focuses

on the spatial and temporal variation in the rainfall character-

istics (i.e. rainfall depth and storm pattern), the performance

index RMSE can be regarded as RMSErd and RMSEsp,

respectively, for the rainfall depth and storm pattern.

In addition to the RMSE, this study employs the cross-

validation algorithm jointly with the Akaike information cri-

terion (AIC) (Akaike ), which measures the relative

goodness-of-fit of a statistical model to find the influential

raingauges. The AIC is defined as:

AIC ¼ �2 × ln Lf
	 
þ 2 × Kpar (7)

where kpar is the number of parameters in the model, and Lf

stands for the value of the likelihood function. Since the

likelihood function is difficulty derived for a complicated

model, Equation (7) can be rewritten using the difference

between the model outputs and observations as:

AIC ¼ ndata × ln RSS=ndatað Þ þ 2 × Kpar (8)

where RSS is the residual sums of the square errors of the

model’s outputs and ndata is the number of observations. In

Equation (8), theAIChas a clear interpretation inmodelfitting.

That is, thefirst termon the right hand side is ameasure of lack-

of-fit of the model of interest, whereas the second term

measures the increased unreliability of the chosenmodel attrib-

uted to the increased number of model parameters. According
://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
to themodel conceptmentioned aboveunder the section ‘Basic

concept’, the influential raingauge results in the worst fitness

performance of semivariograms for rainfall characteristics.

Therefore, the influential raingauge is the one that achieves

the maximum AIC value in a cluster:

AICRMSErd ¼ ngauge × ln RMSErdð Þ þ 2 × ngauge

AICRMSEsp ¼ ngauge × ln RMSEsp
	 
þ 2 × ngauge

(9)

inwhichngauge represents the numberof gauges. Since twoAIC

values (AICRMSErd andAICRMSEsp) are considered for determin-

ing the influential raingauge, this study uses a weighted

objective function (Madsen ) to calculate the weighted

average AICwavg as:

AICwavg ¼ 1
2
½AICRMSErd þAICRMSEsp

þmaxðAICRMSErd , AICRMSEspÞ� (10)

The cross-validation algorithm with AICwavg is carried out

to select the raingauges which significantly affect the temporal

and spatial variation in rainfall under a specific number of clus-

ters. In detail, the influential raingauge in a cluster can be

selected in association with the maximum AICwavg. Then all

influential raingauges form the representative raingauge net-

work under a specific number of clusters.

After that, the AICwavg values are recalculated using the

gauged rainfall data from the representative raingauge net-

works under various numbers of clusters. Since the best-fit

model is associated with the minimum AIC value (e.g.

Mutua ), the resulting optimal raingauge network

should be the one which achieves the minimum AICwavg

value among the representative networks considered.

Evaluation framework

In summary, this study attempts to incorporate the cross-

validation algorithm with the weighted semivariogram

model to establish the semivariogram diagram of rainfall

depth and storm pattern using the radar measurement and

gauged rainfall data, respectively. Evaluation of the rain-

gauge network for finding the influential raingauges can be

accomplished by comparing the fitness performance index

(RMSE) and the AIC for the spatiotemporal semivariograms

of rainfall characteristics. Therefore, based on the above
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model concept and methods adopted in this study, the pro-

posed evaluation framework can be summarized as follows:
Step [1]: Collect the hourly gauged and radar rainfall data

from all gauges and extract the rainfall depth and storm

pattern (i.e. rainfall characteristics) (see Figure 1).

Step [2]: Classify the raingauges into several clusters through

cluster analysiswith the locations of the gauges and rainfall

depth and storm pattern for a specific number of clusters.

Step [3]: Use Equation (5) to estimate weighted theoretical

spatiotemporal semivariograms of the rainfall character-

istics from the radar rainfall as the reference base.

Step [4]: Follow the cross-validation algorithm to select a

raingauges in each cluster as the validation gauge, and

the remaining gauges are calibration gauges.

Step [5]: Calculate the weighted theoretical semivariogram

using theobserved rainfall characteristics from thecalibration

gauges. Then, useEquation (6) to calculate the corresponding

fitness performance index (root mean square error) RMSE in

regard to those from Step [3] (i.e. RMSErd and RMSEsp).

Accordingly, the corresponding AIC values are computed

as AICRMSErd and AICRMSEspusing Equation (9).

Step [6]: Calculate the weighted average of AICRMSErd and

AICRMSEsp (i.e. AICwavg) using Equation (10) to determine

the influential gauge in a cluster in association with the
Figure 4 | Locations of 1336 QPSESUMS grids and 26 raingauges in Wu River watershed.

om http://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
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maximum AICwavg. Finally, all influential gauges are com-

posed of the representative raingauge network for a

specific number of clusters.

Step [7]: Repeat to Steps [2]–[6] for other numbers of clus-

ters, the representative raingauge network for various

cluster numbers could be obtained.

Step [8]: Recalculate the AICwavg values using gauged rainfall

data in various representative networks. By examining the

AICwavg, the optimal raingauge network should construct

the representativeoneassociatedwith theminimumAICwavg.
RESULTS AND DISCUSSION

Study area and data set

The study area, the Wu River watershed, is located in central

Taiwan. The basin encompasses an area of about

2025.6 km2, and the river is about 119.1 km long. Without

any hydraulic storage structures, such as reservoirs and

dams, the runoff of the Wu River intrinsically reflects the

watershed’s response to the rainfall characteristics. Within

the Wu River watershed, there are 26 automatic recording

raingauges (see Figure 4 and Table 2). In Taiwan, the QPE-

SUMS (Quantitative Rainfall Estimation Using Multiple



Table 2 | Summary of raingauges in Wu River watershed

Location

No of gauge Gauge TM_X (m) TM_Y(m)

RG1 Qing-Liu (1) 244435.5 2662715

RG2 Cui-Luan (1) 269444.9 2675033

RG3 Liu-Fen-Liao 212393.2 2647843

RG4 Cao-Tun 216645.6 2652601

RG5 Bei-Shan (1) 238411.7 2653644

RG6 Tou-Bain-Keng 231025.8 2668203

RG7 Hui-Sun 253671.2 2665883

RG8 Ri-Yue-Tan 240635.6 2641873

RG9 Yu-Chi 242744.5 2644064

RG10 Zhang-Hu 234457.1 2644525

RG11 Tai-Chung 217891.9 2671200

RG12 Qing-Liu 246222.9 2663997

RG13 Da-Du-Cheng 245150.6 2651749

RG14 Ling-Xiao 251510.3 2656920

RG15 Pu-Li 249108.6 2650829

RG16 Cui-Luan 273035.8 2676373

RG17 Feng-Shu-Lin 257758.4 2653566

RG18 Ren-Ai 263320.5 2657113

RG19 Kun-Yang 277805.5 2668485

RG20 Rui-Yan 268616.3 2668748

RG21 Cui-Feng 270824.1 2667111

RG22 Bei-Shan 237235.1 2653415

RG23 Shui-Chang-Liu 235829 2661878

RG24 Chang-Fu 237785.6 2666339

RG25 Wai-Da-Ping 241638.9 2650466

RG26 Pu-Zhong 2635217 321.6667
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Sensors system) became operational in late 2001 and incor-

porates data from multiple sensors, such as raingauges,

multiple radars, satellites, numerical models, and lightning

detectors with the goal of making reasonable quantitative

precipitation estimations (QPE) and quantitative forecast,

applicable to flash flood and debris flow warnings (Jou

et al. ). Although the QPE data are produced based

on the radar data from the Weather Bureau in Taiwan,

they have been corrected based on the gauged rainfall data

(Wu et al. a, b). Thus, using the gauged data, the

QPE data can be effectively corrected, and this results in

fewer uncertainties in the QPE (e.g. Abdella & Alfredsen

). Therefore, in this study, the QPE data are treated as
://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
the grid-based rainfall data used in the model development.

The QPESUMS provides 1,336 grids of QPE rainfall data in

the Wu River watershed.

To consider the effect of the strength of data on the rain-

fall distribution in time and space, the gauged rainfall from

26 raingauges and QPE from 1,336 QPESUMS grids

among 10 typhoon events (see Table 3) in the Wu River

watershed are selected as the study data. Since the proposed

evaluation framework to identify the representative rain-

gauge networks first classifies the raingauges into various

groups by means of cluster analysis, this study classifies 26

gauges into clusters of 5, 8, 10, 13, 15, 18, and 20, of

which 10 clusters are suggested in WMO guidelines.

Table 4 represents the results from the classification of exist-

ing raingauges carried out by cluster analysis.

Rainfall characteristics analysis

According to the proposed evaluation framework, the rain-

storm events should be characterized in advance. Figures 5–

8 show the rainfall depth and storm patterns for gauged and

QPE hourly rainfall data. From Figure 5, it is known that rain-

fall characteristics clearly change with the gauges for a

particular event. For example, the average rainfall depths of

26 raingauges approximates 661.6 mm for EV10 (Typhoon

Morakot), but the maximum and minimum depths are

891 mm and 415 mm, respectively. It is also observed that

there significantly exist spatial variations in rainfall depth.

Thus, the rainfall depth could be regarded as a spatial variable

and the corresponding variation can be expressed in terms of

the spatial semivariogram. Similar conclusions can be drawn

from the QPE data as shown in Figure 6.

Examining the stormpattern shown inFigures 7 and 8, it is

clear that the variation changes with the time as well as with

the location. The storm pattern can be similarly treated as a

spatiotemporal variable; thus, its variability can be represented

by the spatiotemporal semivariogram. Although the storm pat-

tern varieswith location and time, it can be classified generally

into three types: the advanced type, central type and delayed

type. For the central storm pattern, the maximum dimension-

less rainfall occurs at the middle time step of the duration

(called the central time step), such as with EV10 at RG21

(Cui-Feng gauge). As for the advanced and delayed storm pat-

tern, their maximum dimensionless rainfalls are at earlier and



Table 3 | Typhoon events in Wu River Watershed study area

Occurrence period

No. of event Typhoon Starting time Ending time Duration (hr)

EV1 HAITANG 2005/7/17 13:00:00 2005/7/20 19:00:00 79

EV2 TALIM 2005/8/31 10:00:00 2005/9/2 00:00:00 39

EV3 BILIS 2006/7/13 01:00:00 2006/7/17 00:00:00 96

EV4 SEPAT 2007/8/17 14:00:00 2007/8/20 00:00:00 59

EV5 KROSA 2007/10/6 01:00:00 2007/10/7 19:00:00 43

EV6 KALMAEGI 2008/7/17 11:00:00 2008/7/20 00:00:00 62

EV7 FUNG-WONG 2008/7/28 03:00:00 2008/7/29 17:00:00 39

EV8 SINLAKU 2008/9/12 14:00:00 2008/9/15 20:00:00 79

EV9 JANGMI 2008/9/28 05:00:00 2008/9/30 03:00:00 47

EV10 MORAKOT 2009/8/6 03:00:00 2009/8/11 01:00:00 119
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later time steps, respectively, such as with EV1 and EV9 at

RG9 (Kun-Yang gauge) and RG11 (Taichung gauge). This

implies that the storm pattern not only varies with location,

but also changes with time. That is to say, the uncertainties

probably exist in the storm pattern in time and space.

Comparison of spatiotemporal semivariograms for

rainfall characteristics

In this section, the semivariograms of rainfall characteristics

are calculated from the gauged rainfall and QPE data,

respectively, for 10 typhoon events to analyze their differ-

ences. As mentioned earlier, the rainfall depth serves as

the spatial variable and the storm pattern is the spatial and

temporal variable. Therefore, the spatial and spatiotemporal

semivariogram should be taken into account to quantify the

spatial and temporal variation in rainfall characteristics.

However, several investigations have indicated that the rain-

fall depth calculated using QPE data possibly departs

significantly from observations (e.g. Buswell et al. ; Hos-

sain et al. ; Schröter et al. ; Zhu et al. ; De

Coning ). Therefore, this study uses the dimensionless

rainfall depth in the computation of spatial semivariograms

as:

d̂i ¼ diPNg

i¼1
di=Ng

(11)
om http://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
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where di is the rainfall depth at the ith gauge, and Ng is the

number of gauges in a watershed. Then, the spatial semivar-

iogram for the QPE and gauged rainfall depth can be

calculated from the aforementioned nondimensionalized

values. Figure 9 presents the spatial semivariogram for the

rainfall depth calculated from the QPE and gauged data,

respectively. It is seen that spatial semivariograms from

gauged rainfall data approach those obtained from the

QPE data, except for EV1 and EV3. Also, the results from

the comparison in spatiotemporal semivariograms randomly

change with the rainstorm events.

Since the storm pattern belongs to the spatial and tem-

poral variate, spatiotemporal semivariograms are required

to quantify the variation for rainfall in time and space.

Since a spatiotemporal semivariogram is a two-dimensional

variable, it is related to location and time. This study

compares the difference between the spatiotemporal semi-

variogram from the QPE and gauged data, respectively,

by calculating their relative ratio as shown in Figure 10.

It can be observed that the angle of the relative-ratio line

of the spatiotemporal approximates 45W for EV10. The

spatial and temporal variations in the storm pattern from

the gauged data approaches those from QPE data. In

other words, the temporal and spatial changes in the

storm pattern extracted from gauged data resemble those

from the QPE data. However, for EV2, the angle of the

relative-ratio line exceeds 45W; this means that the spatio-

temporal semivariograms for the storm pattern from the



Table 4 | Summary for raingauges classified in various numbers of clusters

Number of clusters

No. of gauge 5 8 10 13 15 18 20

RG1 1 1 1 1 1 1 1

RG2 2 2 2 2 2 2 2

RG3 3 3 3 3 3 3 3

RG4 3 4 4 4 4 4 4

RG5 5 5 5 5 5 5 5

RG6 4 6 6 6 6 6 6

RG7 1 1 1 12 7 7 7

RG8 5 8 8 8 8 8 8

RG9 5 8 8 9 9 9 9

RG10 5 8 10 10 10 10 10

RG11 4 6 6 11 11 11 11

RG12 1 1 1 1 12 12 12

RG13 5 5 9 13 13 13 13

RG14 1 1 1 13 14 14 14

RG15 5 5 9 13 15 15 15

RG16 2 2 2 2 2 16 16

RG17 1 7 7 7 14 17 17

RG18 2 7 7 7 14 18 18

RG19 2 2 2 2 2 16 19

RG20 2 2 2 2 2 2 20

RG21 2 2 2 2 2 2 20

RG22 5 5 5 5 5 5 5

RG23 5 6 6 6 6 6 6

RG24 1 6 6 6 6 6 6

RG25 5 5 5 5 13 13 13

RG26 3 3 3 3 3 3 3

Note: ‘1’, ‘2’, and ‘20’ mean the 1st cluster, 2nd cluster and 20th cluster.
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gauged data are higher than those from the QPE data.

The same results can also be seen for other rainstorm

events.

The above results reveal that there are significant vari-

ations in the rainfall depth and storm pattern extracted

from the gauged rainfall data in time and space as compared

with those from QPE data. To compare spatiotemporal

semivariograms estimated from the 10 rainstorm events,

the average values of the fitness performance indices (i.e.

RMSE and AIC) are required for identifying the representa-

tive raingauge network.
://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
Identification of influential gauges

The proposed framework identifies the influential gauges and

corresponding representative raingauge networks by carrying

out cluster analysis and cross-validation. In cluster analysis,

seven numbers of clusters, including 5-, 8-, 10-, 13-, 15-, 18-

and 20-cluster networks, are considered and 10-clusters net-

work are illustrated for identifying the influential raingauges.

Table 4 presents the classification of all raingauges through

the cluster analysis. It is known that single gauges (Cao-Tun

gauge and Zhang-Hu gauge) are classified into the 4th and

10th clusters, so they are defined directly as the influential

gauges in the 4th and 10th clusters, respectively.

Table 5 shows the average AIC values of semivario-

grams for the rainfall depth and storm pattern (AICRMSErd

and AICRMSEsp ), respectively, computed from 10 rainstorm

events in the 10-cluster gauge network. It can be seen that

the average AICRMSE values for the rainfall depth are gener-

ally higher than those for the storm pattern. On average,

AICRMSErd
and AICRMSEsp values for the rainfall depth and

storm pattern approximate –42 and –1640, respectively. To

find the influential raingauge for each cluster, the weighted

average AIC (AICwavg) values are calculated using Equation

(10) as shown in Table 5. In the 1st cluster which includes

four gauges, the average AIC values for the rainfall

depth and the storm pattern are about –41.6 (AICRMSErd )

and –1627.05 (AICRMSEsp ), respectively. The corresponding

AICwavg values are located between –882.3 and –836.7.

Since the Qing-Liu (1) gauge has the maximum AICwavg

value (–836.7), it can be selected as the influential gauge

for the 1st cluster. Similarly, in the 2nd cluster, the

AICRMSErd value at the Cui-Luan gauge is –44.91 and it is

the minimum in five gauges; however, its AICRMSEsp value

for the storm pattern (about –1610.1) is significantly higher

than those of the remaining four gauges. This results in its

weighted average AIC value (AICwavg¼ –849.9) being the

maximum value. Thus, the Cui-Luan gauge is defined as

the sensitive gauge in the 2nd cluster. Additionally, for the

3rd cluster where two gauges are involved (i.e. Pu-Zhong

and Liu-Fen-Liao), the average AIC values for the rainfall

depth (AICRMSErd ¼ –39.24) and the storm pattern

(AICRMSEsp ¼ –1603.4) at the Pu-Zhong gauge are the maxi-

mum. Thus, the corresponding weighted average is at the

maximum (AICwavg ¼ –840.9). Therefore, the Zhong-Pu



Figure 5 | Rainfall depths of 10 typhoon events at 26 raingauges.
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Figure 6 | Rainfall depths of 10 typhoon events at 1336 QPESUMS grids.
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Figure 7 | Storm patterns of 10 typhoon events at 26 raingauges.
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Figure 8 | Storm patterns of 10 typhoon events at 1,336 QPESUMS grids.
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Figure 9 | Comparison of spatial semivariograms for rainfall depth calculated from QPE and gauged hourly rainfall data.
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Figure 10 | Comparison of spatiotemporal semivariograms for storm pattern calculated

from QPE and gauged rainfall data.

Table 5 | Average AIC of rainfall characteristics and its weighted average for a specific rainga

Average AIC

No of cluster Raingauge Rainfall depth

1 Qing-Liu (1) RG1 –42.58
Hui-Sun RG7 –41.49
Qing-Liu RG12 –42.47
Ling-Xiao RG14 –40.11

2 Cui-Luan RG2 –44.91
Cui-Luan (1) RG16 –41.10
Kun-Yang RG19 –40.57
Rui-Yan RG20 –43.57
Cui-Feng RG21 –44.81

3 Liu-Fen-Liao RG3 –39.24
Pu-Zhong RG26 –39.99

4 Cao-Tun RG4 –43.62

5 Bei-Shan (1) RG5 –41.87
Bei-Shan RG22 –44.86
Wai-Da-Ping RG25 –42.11

6 Tou-Bain-Keng RG6 –46.35
Tai-Chung RG11 –38.15
Shui-Chang-Liu RG23 –39.58
Chang-Fu RG24 –40.25

7 Feng-Shu-Lin RG17 –41.97
Ren-Ai RG18 –46.14

8 Ri-Yue_Tan RG8 –42.48
Yu-Chi RG9 –43.55

9 Da-Du-Cheng RG13 –40.44
Pu-Li RG15 –45.08

10 Zhang-Hu RG10 –40.69

‘*’ means the influential gauge selected in each cluster.
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gauge should be identified as the influential gauge in the 3rd

cluster. Using the same method as the aforementioned, the

influential gauges in other clusters can also be determined

as show in Figure 11. It can be seen that the 10 influential

raingauges, the Qing-Liu gauge (RG1), Cui-Luan gauge

(RG2), Liu-Fen-Liao gauge (RG3), Cao-Tun gauge (RG4),

Ri-yue-tan gauge (RG8), Zhang-hu gauge (RG10), Taichung

gauge (RG11), Pu-Li gauge (RG15), Feng-Shu-Liu gauge

(RG17), and Bei-Shan (1) gauge (RG22), are approximately

uniformly distributed throughout the Wu River Watershed.

It concludes that these 10 raingauges can form a representa-

tive network for the Wu River watershed under the

consideration of 10 clusters.
uge used in the cross-validation

AICRMSErd Storm pattern AICRMSEsp Weighted average AICwavg

–1588.31 –836.74*
–1617.49 –850.24
–1679.75 –882.34
–1622.67 –851.44

–1610.10 –849.96*
–1696.38 –889.29
–1646.60 –863.86
–1668.08 –877.61
–1622.81 –856.22

–1603.39 –840.93*
–1685.44 –882.71

–1611.26 –849.25*

–1566.61 –825.17*
–1637.54 –863.63
–1677.98 –881.10

–1655.45 –874.07
–1615.34 –845.82*
–1694.95 –887.05
–1655.30 –867.89

–1634.72 –859.33*
–1632.66 –862.47

–1631.12 –858.04*
–1687.44 –887.27

–1677.27 –879.08
–1661.80 –875.98*

–1635.06 –858.22*



Figure 11 | Representative 10-clusters network in Wu River watershed.
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Establishment of the representative raingauge network

The same procedure as for the 10-gauge network is carried

out to determine the representative raingauge networks for

5-, 8-, 13-, 15-, 18- and 20-gauge networks as shown in

Figure 12. To find the optimal network, the AICwavg are re-

calculated using the rainfall data from the influential

gauges within the representative networks. Figure 13

shows the AICwavg corresponding to the representative

raingauge networks for seven numbers of clusters. It reveals

that the AICwavg decreases from the 5-cluster network

(about –858) to the 10-cluster network (approximately –

991.2), and increase to the 20-cluster network (about

–72.5). Since the best-fit model is associated with the mini-

mum AIC value, the 10-gauge raingauge network can be

selected as the optimal network in the Wu River watershed.

In order to demonstrate the optimal 10-gauge network,

this study utilizes two additional rainstorm events

(Typhoons Fanapi in 2010 and Saola in 2012) to evaluate

the difference in the semivariograms for the rainfall charac-

teristics against the QPE data between all gauges and the

optimal network. Figures 14 and 15 show the comparison

of the semivariograms for the rainfall depth and storm pat-

tern from the QPE data with those from and gauged data
om http://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
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in all gauges and the optimal network, respectively. Note

that the spatiotemporal semivariograms calculated from

rainfall data at all raingauges (on average 1.84) significantly

depart from those from the QPE data. Moreover, Figure 15

shows the relative-ratio line for the spatiotemporal semivar-

iogram from gauged rainfall data in all raingauges and the

optimal network, respectively. This reveals that the semivar-

iograms for the optimal network are closer to those

calculated from QPE data than those based on all gauges.

The RMSE of the rainfall depth (0.01) and the storm pattern

(0.002) for the optimal network are, respectively, signifi-

cantly less than those for all gauges, 0.13 (rainfall depth)

and 0.066 (storm pattern). As a result, the optimal

10-gauge network in the Wu River watershed determined

using the proposed evaluation framework can provide the

rainfall characteristics, of which spatial and temporal vari-

ation resemble those results from the grid-based QPE.
CONCLUSIONS

This study proposes an evaluation framework to identify the

influential raingauges which can form the representative

raingauge network by integrating cluster analysis with



Figure 12 | Location of influential raingauges in representative raingauge networks of various numbers of clusters (5, 8, 13, 15, 18 and 20 clusters).

Figure 13 | Weighted average AIC (AICwavg) values for representative raingauge networks

of various numbers of clusters (5, 8, 13, 15,18 and 20 clusters).
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weighted semivariogram models. The evaluation framework

is based on quantifying the fitness performance index (AIC)

for the spatiotemporal semivariograms of the rainfall charac-

teristics in the raingauges to the grid-based quantitative

rainfall estimation (QPE). The 26 raingauges and 1,336

grids ofQPEdata from the 10 typhoons in theWu riverwater-

shed located in Central Taiwan are the study area and data

set. By means of the proposed evaluation framework, the

representative raingauge networks of 5, 8, 10, 13, 15, 18

and 20 clusters are obtained, and the 10-gauge network is

selected as the optimal network. Two additional rainstorm

events, Typhoon Fanapi (2010) and Saola (2012), are used

to evaluate the applicability and reliability of the optimal



Figure 14 | Comparison of spatial semivariograms for rainfall depth calculated using QPE

data and gauged rainfall data from all gauges and the optimal 10-gauges

network.

Figure 15 | Comparison of spatiotemporal semivariograms for storm pattern calculated

using QPE data and gauged rainfall data from all gauges and the optimal 10-

gauges network.

96 C.-H. Chang et al. | An evaluation framework to identify the optimal raingauge network Hydrology Research | 48.1 | 2017

Downloaded fr
by guest
on 25 April 202
network. The results reveal that the spatiotemporal semivar-

iograms for the gauged rainfall characteristics calculated

from the optimal 10-gauge network resemble the variation

in the QPE’s rainfall characteristics in time and space.

Although a number of investigations have proposed

methods for identifying the raingauge networks, their results

differ due to the diverse objective of selecting the optimal

network. The optimal network identified in this study is

expected to capture the change of the rainfall characteristic

in time and space based on the grid-based radar data. Never-

theless, the comparison of the proposed framework with

other methods is intended in future work. However, in

addition to the identification of the optimal network,

increasing the density of raingauges to provide essential

and useful rainfall record is also an important issue in

recent hydrology research, such as the correction of radar-

based quantitative rainfall estimation (e.g. Wood et al.

; Yilmaz et al. ; Barca et al. ; Stisen et al.

; Adhikary et al. a, b). Therefore, future work
om http://iwaponline.com/hr/article-pdf/48/1/77/367002/nh0480077.pdf
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should expand the proposed evaluation framework to deter-

mine the locations for new raingauges in a catchment area.
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