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Rainfall runoff phenomena in small watersheds are favorably modelled using 
the kinematic wave approach. The present investigation considers excess rain- 
fall as time dependent but ignores spatial effects. Solutions of a recent ap- 
proach are analyzed for a complete cascade consisting of catchment area and 
small stream. Typical cases are discussed and results include predictions of 
maximum discharge at the watershed outlet, corresponding time to peak and 
the overall description of the resulting hydrograph. Criteria concerning the 
applicability of the kinematic wave approach are given, and examples illustrate 
the computational procedure. 

Introduction 

Kinematic wave theory is a simple method to describe unsteady flow in open 
channels. Compared to the full one-dimensional flow equations, a modification of 
the dynamical properties leads to a single equation for either flow depth or dis- 
charge as a function of time and space. This approach is particularly well suited for 
flows over small watersheds (Raudkivi 1979). During the last two decades a 
number of hydrological models have been proposed, some of which are 
summarized by Eagleson (1970). The simplest of these considers excess precipita- 
tion as independent of time and space (Wooding 1965 and 1966). 

Recently, a simple hydrological rainfall runoff model has been developed for a 
single-peaked excess' rainfall (Hager 1984a). Solutions have been represented 
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graphically, and it is possible to consider a cascade by using the plots repeatedly. 
The major advantage of such a model is its elementary application to realistic runoff 
processes in small basins under relatively high excess precipitation. Its disadvan- 
tage is a semi-analytical adapting process, by which input data for a following 
cascade must be computed. 

The present investigation reconsiders in more detail the aforementioned solu- 
tions. Effects of the catchment area shape, the roughness coefficient and the 
bottom slopes of both catchment area and small stream on the resulting hydro- 
graph at the basin outlet will be studied. The computational procedure is explained 
in detail and conclusions include recommendations, which might be useful for more 
sophisticated, hydrological rainfall runoff models. 

Governing Equations 

Unsteady flows with predominate flow direction may be modelled using the de 
Saint-Venant equations, which balance mass and longitudinal momentum (Eagle- 
son 1970). Overland and small stream runoff is characterized by two distinct pro- 
perties 

i) flow depth is much smaller than the elevation difference of two typical points 
of the reach, 

ii) typical Froude number is smaller than unity. 

These peculiarities allow simplification of the original equations (Raudkivi 1979); 
the resulting system 

corresponds to the kinematic wave approach described extensively by Lighthill and 
Whitham (1955). Eq. (1) is the full continuity equation with h flow depth, t time, q 
discharge per unit width, x longitudinal coordinate, p lateral inflow or outflow. Eq. 
(2) is the simplified dynamical relation with So bottom slope and Sf frictional slope, 
respectively. For turbulent flow Sf may be expressed by the Manning-Strickler 
formula 

in which K = lln is the friction coefficient. It may be shown (Hager 1984b) that 
both K and So can be approximated by appropriate averages along the considered 
reaches. For small watersheds it is further reasonable to assume excess rainfall only 
as a function of time, p = p(t), thereby neglecting spatial effects. A typical time 
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distribution of the excess precipitation provides the relation (Hager 1984a). 

in which p* is the maximum excess precipitation at time t = t*; T = tlt* is non- 
dimensional time with T = 0 as start of excess precipitation, and m is the hydro- 
graph shape parameter. 

Ensuing considerations are restricted to heavy precipitations, implying an initial- 
ly dry catchment area. For relatively long catchment areas and streams the inflow 
depths at their respective highest point are much smaller than a typical flow depth 
(Hager and Hager 1985). Asymptotically, the flow depths h(xi = 0,t) = 0 in which 
index i referes to either side of the catchment area and to the small stream at their 
bisecting line. Eqs. (1) and (2) then must be solved using the conditions q(0,t) = 
q(x,O) = 0. The scalings 

transform Eqs. (1) and (2) into (Hager 1984a) 

subject to the conditions Q(X = 0) = Q(T = 0) = 0. This has been solved using the 
method of characteristics (Hager 1984a). Fig. 1 shows hydrographs Q(T) for vari- 
ous significant locations X. There are three domains to be distinguished from each 
other 

i) increasing discharge: for X-w hydrographs are given by the S-shaped "steady 
state" solution, 

ii) maximum discharge: for finite values of X, hydrographs separate from the first 
curve to attain the maximum discharge QmaX(X) and corresponding time is T,, 
= tmaxlt*, 

iii) receding discharge: for T > T,,,,,, discharge is decreasing to reach asymptotical- 
ly Q = 0. 

Once the basic parameters p*, m, t * ,  K, So are prescribed, Fig. 1 allows a direct 
and simple evaluation of the governing hydrograph at any location of the catch- 
~nen t  area. Based on these results the runoff behaviour of the small stream may be 
investigated. This is achieved by accounting for the stream parameters K, So and 
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Fig. 1. 

0.5 - Non-dimensional hydrographs 
Q(T) for various locations X and 
precipitation shape factors m = 2 

0.25 - (top), m = 5 (center), m 10 

(bottom); the dotted dashed curve 
indicates the locations of Q,,,. 

1.5 2 2.5 3 

proper values for p*, m,  t* regarding the transition from catchment area to small 
stream. Finally, one may use the results for a cascade model, thereby having in 
mind the approximate and simplified description of the rainfall-runoff model. An 
extensive discussion of the computational procedure and illustrative examples are 
given in Hager (1984a). 

Maximum Lateral Inflow 

The maxima of the lateral inflow to the stream are indicated in Fig. 1 by the dotted- 
dashed curves. According to Hager (1984a) 

Q m a x = X ,  X < < l  

By introduciag the new scalings 

- X - x = -  Q m a x  

abs Q m " G  
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.... ' ,,........ . '  

Q "lax , . . . "  'y 
0.5 Fig. 2. Relative maximum discharge Q,,, as 

function of relative distance x accord- 
ing to Fig. 1 (solid curve, for all m) 

0 and Eq. (11) (dotted curve). 
0 0.5 1 1.5 2 

in which Qabs = Qabs(m) is maximum possible discharge, Eq. (8) may be generalis. 
ed. An approximation for Qabs is (Sinninger and Hager 1984) 

in which e is Euler's number. For m = 2, 5, 10 the respective values of Qab, are 
exactly 2.780, 1.244, 0.688, compared to 2.837, 1.244, 0.677 from Eq. (10). 

Fig. 2 shows a plot of Q m a X ( a  form = 2,5 ,10  according to Fig. 1. It is noted that 
all curves become identical, following Eq. (8) for small x but tending to unity for 
large X. The approximation 

is also plotted as dotted curve. Deviations between the two are less than 5%. 

Time to Peak and Hydrograph Shape 

The solutions Q ( q  according to Fig. 1 have more or less the shape of the excess 
precipitation distribution, Eq. (4). A hydrological cascade thus may approximately 
be achieved by considering the transition from overland to stream flow as governed 
by the aforementioned relation, thereby modifying the respective scalings. Evi- 
dently, the peak discharge Q,,, will be fixed, such that time to peak, tmaX, must be 
adapted in order to fit best with the exact solution. Fig. 3 shows i) the exact 
solution Q ( q  for X = 2 and m = 10 according to Fig. 1, ii) the curve 

' r\ ,I : 
Fig. 3. Explanation of the effect of adapted 

\ '. T,,, for fixed maximum discharge: 
I ; \ .  
: \ ' 

\ .  
hydrograph according to Fig. 1 (solid 

1 : 
\ 
\ '. 
\ '., 

curve) is badly reproduced by setting 
1 .' 

I . '  \ '. 
\ '.. - 

/ ,: Trnax,adp - Tmax,eff (dotted curve) but 
/ .' <.-- fits better if Tmax,adp < Tmax,eff (dashed 

0 
0 1 2 3 4 curve). 
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Fig. 4. 

Comparison of hydrographs 
Q(X, 7') according to Fig. 1 (solid 
lines) and hydrographs according 
to Eq. (12) for rn 10. 

in which = TITmax = tltmax with tmax as time to peak according to Fig. 1 and iii) 
Eq. (12) with an adapted value for tmax, namely 

in which Tmax = tma,lt*. It is seen from the figure (and may be shown for all other 
X) that the latter approach, accounting for Eq. (13), leads to a reasonable agree- 
ment with the exact solution. 

Fig. 4 compares Q(T) according to Fig. 1 with the adapted curves using relations 
Eq. (11) for Q,,, and Eq. (13) for TmaX and the discharge distribution Eq. (12) for 
m = 10. Deviations between two corresponding hydrographs are sufficiently small 
in a wide range of T and X. Note that Eq. (12) is valid for all m shown in Fig. 1; it 
may be regarded as approximate solution of Eqs. (6) and (7). 

Computational Aspects 

The original method proposed by the author (1984a) consisted in a semi-graphical 
approach. After every cascade hydrographs had to be approximated by a relation 
analogous to Eq. (4), thereby specifying parameter t*, p* and m for the subsequent 
cascade. 

The above approach suggests that the precipitation distribution p = p(t,t*,m) 
should be approximated with Eq. (4) by setting m = 10 and adapt t* such that the 
resulting hyetograph fits best with the effective excess rainfall distribution (see also 
latter example). 

Let indices "1" and "2" refer to properties of the catchment area and to the small 
stream, respectively, and "i" to either of the two cascades, Then, from Eq. (lo), 
Qabs(m = 10) = 0.69, whence 

" 

from Eq. (11) for cascade i. Time to peak, Tm,x,i, for Xi is then given by Eq. (13), 
and the complete hydrograph is prescribed by Eq. (12). 
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Discussion of Particular Cases 

The cascades "catchment area-small stream" of which the non-dimensional lengths 
Xi are either very small or large may be treated by a simple approach. 

i) Case X<<1 
For small (positive) X, or x according to Eq. (9), relation Eq. (11) simplifies to 
Q,,, = X. With X according to Eq. (5)2, 

whence, with p2* = qmax,llbl 

or, for the maximum discharge in a small stream of total width B 

This simple result states that the maximum discharge Q in (m3/s) at the watershed 
outlet with sides xl(Blbl) and x2 is equal to the maximum excess precipitation p,* 
times the surface A = x1x2BIb1 (note that B refers to the complete stream width 
while bl corresponds only to the stream width relating to the considered side of the 
catchment area). 

Eq. (17) holds for both time dependent excess rainfall and steady flow conditions 
with pl = p* = constant. Surprisingly enough Eq. (17) contains neither Ki nor So,l 
of the catchment area and the small stream. Consequently the geometrical shape of 
the basin and the flow parameters have no effect on the maximum discharge. 

Before investigating the necessary conditions in order that Xl<<l, let us compute 
time to peak of the hydrograph at the watershed outlet. Using twice Eq. (13) yields 

or, when inserting values of X2 

( 1 9 )  
This may equally be written as 
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Fig. 5 is a graphical evaluation of Eq. (20) in which 

Usual orders of KlIK2 r: 112 and (So,lISoz)'" = 2; consequently the two last terms 
of Eq. (21) compensate approximately. Since (bllxl)<<l and (x21x1) = 0(1), thus 
x<<l, one may set 

The determination of the hydrograph at the watershed outlet is now simple and 
straightforward. With 

in which t,,,,,, and Q,,,, are given by Eqs. (22) and (17), respectively, 

Example 
Consider a catchment area with a small stream of B = 3 m width, Ks = 18 m113s-1, 
So, = 0.018. The catchment area may be simplified as two rectangular planes 
having widths 850 m and 250 m, respectively, (thus bl = 3x8501 (1,100) = 2.3 m) 
and So,, = 0.08, Kc = 8 mU3s-J. The length of the stream is x, = 3,450 m (see also 
Hager 1984a). 

At time t = 0 rainfall starts with characteristical parameters p* = 2.5 mmlh 
(excess rainfall), t* = 6 h and m = 5. Since the present investigation considers only 
hydrograph shape parameters m = 10, one has to choose for t* = 8 h (start of 
rainfall two hours earlier as indicated above, see also later Fig. 6), p* = 2.7 mmlh 
and m = 10 (excess rainfall volumes are almost identical for the two of the repre- 
sentations). What is the resulting hydrograph at the basin outlet? 
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Fig. 6. 

Comparison between .present sim- 
plified formulation and observations 
(Jaton 1982); excess hyetograph 
(above) at half-hours intervals and 
adapted excess hyetograph (dashed 
curve); resulting hydrographs (below) 
at basin outlet (dotted curve com- 
puted). 

With XI = Xc r 0.168 and X2 = X, = 0.0106 the condition Xi<<l is fulfilled. 
According to Eq. (17) maximum discharge for the watershed is Q,,,, 5 

0.0027 x 1,100 x 3,45013,600 = 2.87 m3s-'. According to Eq. (22), corresponding 
time to peak obtains t,,, = 1.28 t: = 10.24 h. Fig. 6 compares observations 
described by Jaton (1982) and discussed by Hager (1984a) with the present formu- 
lation, and a fair agreement between the two is noted. 

Computed discharge at t < t,,,, is overestimated; this fact must be attributed to 
the adapting process performed in Fig. 4. Given the simplicity of the present 
approach, the result must be regarded as a fair estimate of the effective runoff 
process. 

The condition to be fulfilled in case i) is that Xi (whence both X, and X,) must be 
small when compared to unity. Since Ki are more or less fixed (5  < Ki < 25), and 
the effect of the bottom slopes may be regarded as subordinate Xi = l/S:(:, Xi 
becomes small for 

- relatively small catchment areas (say surface smaller than 10 km2), 
= heavy maximum excess precipitation p; (say more than 2 mmlh), 
= long time to peak tj* (say more than 5 hours). 

Whenever all of these conditions are fulfilled, case i) may be applied. Evidently, it 
will be advisable to check both of the parameters, Xc and Xs, to be smaller than 
unity. An upper limit of X, for which case i) applies is, roughly, Xi < 0.30 (see Fig. 

2). 
Appendix I gives further information about the basic requirements regarding the 

kinematic wave theory. It is found that 

- the product (Ki-,,) must be smaller than 3 for both, catchment area and small 
stream in order that dynamical wave effects are insignificant, and 

-=the ratio hma,,il(So,+i) be much smaller than unity (say < 0.05) in order that 
diffusive effects remain insignificant. According to (Hager and Hager 1985) this 
latter condition may also be expressed as pmaXzi < 0.07 $/(K~-),. 
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ii) Case X>>1 
For relatively large xi, ~anh(X~)-+l  according to Fig. 2 (a lower limit is xi = 2). 
Restricting analysis again on hydrograph shape parameters rn = 10 (for all portions 
of a cascade), = 0.69 from Eqs. (10,ll) .  Consequently, maximum lateral 
inflow to the small stream is 

With t,,,,,,, = t2* = t;"(1.1+0.4 XI) according to Eq. (13) and p2* from Eq. (25) 

and 

0 . 6 9  p * x  
= K S1/2 p * 5 / 3  t * 5 / 3  Q - - 2 2 

Qmax,z 2 0,2 2 2 max ,2 2 

whence, with Eqs. (25) and (26) 

Non-dimensional maximum discharge per unit width at the watershed outlet may 
be expressed as 

thus 

In contrast to case i), in which 4 = 1 from Eq. (16), case ii) depends on both, x and 
XI.  An asymptotic solution for X,+m is 

from Eq. (30) or, by redimensionalizing 

300 
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in which 2x1p;t~l(9b,) is identified as maximum stream flow depth, hm,,,s. Conse- 
quently, case ii) does not depend on the flow characteristics of the catchment area 
(KlSA5) nor on the stream length x, .  

Relative lengths X, become long (say X, > 2) provided 

- xi are long (considerable surface of catchment area, almost quadratic shape), 
- pT are small (small excess precipitation), 
- tic are short (times to peak are short, say some minutes). 

Comparing these properties of case ii) with the basic requirements of the present 
hydrological model (heavy excess precipitation, relatively small catchment areas) it 
is noted that Xi>>l must usually be excluded. Since Xi depends significantly on tT, 
~ ~ ~ t y - ~ ' ~ ,  and having Eq. (13) in mind, it is unrealistic that X2>>1 if Xl>>l. 

iii) Case 0.3sXis2 
For intermediate values of Xi effects of cases i) and ii) appear simultaneously. 
Appendix I1 contains a complete derivation governing this case; the main results 
may be summarized as follows: 

a) It is useful1 to introduce the function 

by which all needed relations for the hydrograph at the basin outlet may be 
represented. 

b) Time to peak of the hydrograph at the watershed outlet becomes 

max , s  0. 4 x X 1  

t: 
(I .ltO.4X1 )(I .I t 1 (34) 

$ : I 3  ( 1  .1+0.4X1 ) 5 / 3  

which is plotted in Fig. 7. Note that x<<1 usually according to the statements in 
case i), whence tm,,,slt;" may approximately be determined by Eq. (22), for 
which x = 0. 

c) Maximum discharge per unit width at the basin outlet obtains 

in which 4 is defined in Eq. (29). This is plotted in Fig. 8 as 4 = 4(X1,x). Note 
that d(Xi<<l)+l (case i)), while 4(Xi>>l) (case ii)) is given by Eq. (30). 
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2 
Fig. 7. Relative time to peak t,,,,,,Jt,* at the 

basin outlet as a function of XI  for va- 
1 

1 2 rious typical x accoring to Eq. (21). 
0 

Fig. 8. Relative maximum discharge, 4, 
0.5 according to Eq. (29) at the basin out- 

let in function of XI  for various typical 
x according to Eq. (21). 

' 0  0.5 1 1.5 2 

Computational Procedure 

The computational procedure may be summarized as follows: 

1) Basic Parameters 
Catchment area roughness coefficient Kc, average bottom slope SO,c, lengths x, ,~ and 
x,,~ (two sided); 
Small stream roughness coefficient K,, average bottom slope So,,, length x, and 
stream width B, whence bl = (xc,ll(xc,l+xc,,))B; 
Precipitation excess rainfall characterized by P,* and t,* so that m = 10 (the peak 
zone of the excess hyetograph should be particularly well modelled). 

2) Non-Dimensional Length X, 
The non-dimensional length of one of the sides of the catchment area (usually the 
longer one) is given by Eq. (5)2 

in which all coefficients are given in 1). 

3) Runoff Number x 
Apart from XI, runoff is characterized by the runoff number x given in Eq. (21) 
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This number will usually be small. 

4) Application of Diagrams 
Runoff process over catchment area and along the small stream is analysed using 
Figs. 7 and 8, the result being the hydrograph at the watershed outlet. The plots 
yield t,,,, and q,,,, in terms of Xc(= XI) and X. Introducing the parameters 

then finally allows the hydrograph to be expressed as 
A h  h h 

Q(T) = [T e x p ( l - ~ ) ] ~ ~  ( 3 9  

Maximum discharge at the watershed outlet becomes Q,,,, = qmaX,$B in (m3s-I). 

5) Model Verifications 
The kinematic wave approximation holds only if 

i) dynamical waves are damped and flow conditions are globally subcritical, 
corresponding to F < 1 or, according to Appendix I 

F,ax,i is the maximum Froude number of flow at the lateral stream inflow and at 
the basin outlet, and K (m1I3/s) = l ln is Manning's roughness coefficient. 

ii) the flow is very shallow, i.e. [hl(Soxx)],,,i<<l or, according to Hager and 
Hager (1985) 

The numbers at the right hand side of Eqs. (40) and (41) should be regarded as 
informational indications. 

Example 
Consider a symmetrical catchment area with xCxl = x, ,~  = 1,500 m and a small 
stream of length xs = 6,000 m along its center. Average bottom slopes are S o ,  = 0.1 
and S o ,  = 0.02, respectively, and roughness coefficients according to Manning's 
formula may be estimated as Kc = 10 m113s-1 and K, = 20 m1I3s-!. The excess 
hyetograph can be approximated by pr = 20 m d h ,  t,* = 1.5 h and mc = 10. Find 
the resulting hydrograph at the watershed outlet for a stream width B = 10 m. 
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- 10 

- 20 

5 Fig. 9. Hyetograph p p( t )  according to ex- 
ample with pl* = 20 mmlh and result- 
ing hydrograph Q = ~ ( t )  at the 
watershed outlet. 

0 1 2  3 4 5 6 (h )  

1) Basic parameters: Kc = 10 m1'3s-', So,, = 0.1, xc = 1,500 m, 
K, = 20 m1'3s-', So, = 0.02, x, = 6,000 m, 
P,* = 5 . 6 ~ 1 0 ~ ~  ms-', t,* = 5,400 s, m, = 10. 

2) Non-dimensional length X,: Inserting these values in Eq. (36) results in 
Xc = XI = 0.91. 

3) Runoff number: With bl = B12 and Eq. (37) the runoff number is x = 0.10. 

4) Application of diagrams: Fig. 7 yields tmax,slt~ = 1.65, thus t,,,, = 2.5 h; Fig. 8 
gives 4 = 0.66, thus q,,,, = 5 . 6 ~ 1 0 - ~  1,500~6,000X 0.6615 
= 6.6 m2s-' and finally Q = q,,,, B = 66 m3s-'. 

Accounting for the scalings in Eq. (38) allows determination of the hydrograph 
at the watershed outlet (see Fig. 9). Also included in the plot is the governing 
excess hyetograph, and it is noted that the time difference between the two maxima 
is At = 1 h. 

5) Dynamical wave condition, (~fl), = 3.1 and (K-)), = 2.8 is near the limit 
but fulfilled. The diffusive wave condition Eq. (41), p,,,,, = 5 . 6 ~  ms-' < 
0.021 ms-' and p,,,, = q,a,,slXs = 6.6/6,000 = l . l x l ~ - ~  ms-' < 6 x  ms-' 
are also satisfied. 

As a consequence the solutions according to the kinematic wave approxima- 
tion and the de Saint Venant flow equations are nearly identical. 

Conclusions 

The present investigation examines non-linear runoff process resulting of time- 
dependent excess precipitation by means of the kinematic wave theory. Considera- 
tions include a watershed consisting of two rectangular planes (catchment area) 
and a small stream situated at its downstream zone. Explicit solutions are given for 
the hydrograph at the watershed outlet. The following conclusions are immediate: 
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1) Solutions of a recent investigation concerning runoff from a singular cascade 
can be approximated in terms of the original input function (excess rainfall). 
The resulting main features of the hydrograph, namely maximum discharge and 
corresponding time to peak, and the hydrograph shape parameter are specified 
for arbitrary geometrical and hydrological parameters. 

2) A discussion of particular cases with respect to the non-dimensional length X 
reveals a simple (and realistic) case for small X. Maximum discharge at the 
basin outlet is then equal to maximum excess precipitation times the surface of 
the catchment area. This result holds for both steady and non-steady flow 
conditions (with a single-peaked hyetograph). Further, it is shown that large X 
violate the assumptions governing the present hydrological rainfall runoff 
model. 

3) Finally, intermediate values of X are considered and plots enable a direct and 
rapid determination of the resulting hydrograph at the watershed outlet. 
Criteria concerning the applicability of the kinematic wave approach are given. 

4) maximum discharge at the watershed outlet depends on the non-dimensional 
catchment area length X, and the runoff number x specified in Eq. (21). x 
accounts for the geometrical properties of the catchment area and the small 
stream. 

5) The computational procedure for the cascade >>catchment area-small streamcc is 
discussed and illustrated by examples. All pertinent relations for the sought 
hydrograph are given analytically; analysis is straightforward once the basic 
parameters are specified. This particular feature of the present hydrological 
rainfall-runoff model allows a simple prediction of hydrographs in small water- 
sheds under heavy excess precipitation. 

Notations 

Some of the notations appear with indices "c" and "s" and refer then to catchment 
area and small stream, respectively; accordingly, indices "1" and "2", ... refer to 
the first, second, and following hydrological cascades. * denote maxima of lateral 
inflow, while "max" refer to the maxima of the resulting cascade outflow. Index 
"abs" refers to the maximum possible discharge. 

b [ml portion of stream width relating to one side of the catchment area 
B [ml total stream width as an average 
F' [-I Froude number 
g [ m ~ - ~ ]  gravitational acceleration 
h [ml flow depth 
K [m1i3s-'] roughness coefficient according to Strickler's formula 
m [-I hydrograph shape parameter 
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roughness coefficient according to  Manning's formula 
excess precipitation 
discharge per unit width 
relative maximum discharge per unit width according to  Eq. (29). 
non-dimensional discharge according to  Eq. (5) 
discharge 
non-dimensional discharge according to  Eq. (9) 
average bottom slope 
friction slope 
time 
non-dimensional time according to  Eq. (5) 
non-dimensional time according to  Eq. (12) 
longitudinal coordinate 
non-dimensional longitudinal coordinate according to  Eq. (5) 
non-dimensional longitudinal coordinate according to Eq. (9) 
non-dimensional flow depth according to Eq. (5) 
runoff number according to  Eq. (21) 
diffusion number 
auxiliary function 
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Analysis of Non-Linear Rainfall-Runoff Process 

Appendix I Conditions i), ii) and the kinematic wave approach 
Kinematic wave theory requires that i) Froude numbers be always smaller then 
unity and ii) maximum flow depth be much smaller than the difference of eleva- 
tions of a typical reach. Maximum Froude number may be defined as 

in which index "max" relates to both, q and h. According to Eq. (16) q,,,, = 
p~x1x2Ibl, and the relation between flow depth and discharge per unit width is 
given by Eqs. (2) and (3) 

Inserting this into Eq. (42) results in 

p 1 1 / 1 0  ~ 9 1 1 0  5 9 / 2 0  g-'1/2 
0  

( 4 4  
max qmax 

Since the order of maximum discharge per unit width in small streams will be 
approximately 0.1 6 q,,, G 10 m2s-', its effect on F,,, is insignificant, F,,,(q,,,) 
0 (1). With g-1'2 = 0.32 m-li2s, the necessary condition for both catchment area 
and small stream is 

in which K (mU3s-') and So (-). Dynamical effects of wave propagation, therefore, 
are absent for flows over rough, slightly sloped surfaces. 

Condition ii) requires 

This criterion cannot be further simplified from this point of view. However, 
detailed investigation into the kinematic wave pattern allows definition of I) = 

(p~3fld$),ax,i < 0.07 (Hager and Hager 1985). 

Appendix II Hydrographs at the watershed outlet for intermediate values of Xi 
Maximum discharge is given by Eq. (11) or by Eq. (14) for m = 10, whence, upon 
inserting +i(X,) according to Eq. (33) 

in which 0 S +i G 1. For given X1, one determines for = X2+,, whence 
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Further, with t2* = tl* (l.l+0.4Xl) and 

and with Eq. (18) 

This depends only on XI and y, and is plotted in Fig. 7 for 0 6 X I  6 2 and typical 
values of y,. With Eq. (47) maximum discharge of cascade "2" obtains 

Q m a x , 2 =  '2 $ 2  

in which X2 is given by Eq. (49) such that 

m a x  ,2 

Inserting Eq. (48) then yields 

so that finally 

according to Eq. (21). Using Eq. (49) to express X2 in terms of X, and y,, 4 = 
4(Xl,y,); the result is plotted in Fig. 8. 
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