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ABSTRACT

In traditional flood frequency analysis, a minimum of 30 observations is required to guarantee the accuracy of design results with an

allowable uncertainty, however, there has not been a recommendation for the requirement on the length of data in NFFA (nonstationary

flood frequency analysis). Therefore, this study has been carried out with three aims: (i) to evaluate the predictive capabilities of nonstation-

ary (NS) and stationary (ST) models with varying flood record lengths; (ii) to examine the impacts of flood record lengths on the NS and ST

design floods and associated uncertainties; and (iii) to recommend the probable requirements of flood record length in NFFA. To achieve

these objectives, 20 stations with record length longer than 100 years in Norway were selected and investigated by using both GEV (gener-

alized extreme value)-ST and GEV-NS models with linearly varying location parameter (denoted by GEV-NS0). The results indicate that the

fitting quality and predictive capabilities of GEV-NS0 outperform those of GEV-ST models when record length is approximately larger than

60 years for most stations, and the stability of the GEV-ST and GEV-NS0 is improved as record lengths increase. Therefore, a minimum of

60 years of flood observations is recommended for NFFA for the selected basins in Norway.
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HIGHLIGHTS

• This study evaluates the predictive capabilities of nonstationary (NS) and stationary (ST) models with varying flood record lengths.

• This study examines the impacts of flood record lengths on the NS and ST design floods and associated uncertainties.

• A minimum of 60 years of flood observations is recommended for NFFA for the selected basins in Norway.
1. INTRODUCTION

Flooding is one of the major natural disasters and has caused casualties and huge economic losses worldwide in the 21st

century (Hallegatte et al. 2013; Arnell & Gosling 2016; Kan et al. 2016; Slater & Villarini 2016; Kuang et al. 2018; Yin
et al. 2018; Zhang et al. 2018; Yan et al. 2019a; Hou et al. 2020; Li et al. 2020; Venvik et al. 2020). In the hydrological com-
munities, flood frequency analysis (FFA) is the most widely used approach to characterize flood risk and estimate design
values for hydrological structures. The fundamental assumption of FFA is that the historical extreme flood events are inde-

pendent and identically distributed, namely the so-called stationary (ST) assumption. However, it should be mentioned
that the ST assumption is quite rigorous because of the dynamic nature of flood events caused by climate change and
human activities (Vogel et al. 2011; Luke et al. 2017; Serago & Vogel 2018; Zhang et al. 2019). Thus, the ST assumption

has been questioned by many researchers under changing environment (Milly et al. 2008; Villarini et al. 2009; Montanari
et al. 2013; Milly et al. 2015; Yan et al. 2017a; Xu et al. 2018; Xiong et al. 2019; Yan et al. 2019b).

Nonstationary FFA (NFFA) is proposed to address the nonstationary (NS) issue of extreme flood events. As evidenced from

recent review articles, there are several different methods for NFFA (Khaliq et al. 2006; Hall et al. 2013; Madsen et al. 2014;
Bayazit 2015; Hao & Singh 2016; Yan et al. 2017b; Salas et al. 2018; Jiang et al. 2019; Qu et al. 2020; Xiong et al. 2020; Yan
et al. 2021), among which the time-varying moments (TVM) method is the most popular approach. In the TVM method, the
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statistical parameters of flood distribution are no longer invariant but change with time or other covariates to capture the

trend of flood frequency (Rigby & Stasinopoulos 2005). However, despite the numerous studies in NFFA, there is neither
a noncontroversial method for performing NFFA nor well accepted governmental guidelines for updating current design
flood strategies (Serago & Vogel 2018). One of the concerns is the tremendous uncertainties in NFFA induced by model struc-

ture and parameter estimation of NS models (Hu et al. 2015; Serinaldi & Kilsby 2015; Luke et al. 2017; Serago & Vogel 2018;
Sen et al. 2020). Typically, the model structure of the NS model is more complex than that of ST model, since additional par-
ameters are introduced to capture the historical trend of extreme flood events. Thus, theoretically, more flood samples are
required to provide reliable and robust parameter estimations for NS models. However, in many cases, the available flood

record length is shorter than 50 years and is often limited to 20–30 years (McCuen & Galloway 2010; Kjeldsen et al.
2014; Kobierska et al. 2017; Ekeu-Wei 2018; Hu et al. 2020). So, for practical reasons, it is necessary to investigate the
impacts of record lengths on NFFA considering the various availability of flood observations worldwide.

Another concern is the predictive capabilities of NS models. Numerous literatures have reported that NS models can
improve the statistical representation of historical flood series compared with ST models (Sun et al. 2018; Xie et al. 2018;
Lu et al. 2019; Su & Chen 2019), but the predictive capabilities of NS models for out-of-sample prediction are still questioned.

Only very limited study has compared the predictive capabilities of NS and ST models. Luke et al. (2017) conducted split-
sample testing and comprehensively evaluated predictive capabilities of NS log-Pearson Type III distributions compared
with ST models in the USA, and recommended the use of updated ST model for flood risk analysis in basins that have

been affected by human activities. But they did not consider the effects of different flood record lengths on the predictive
capabilities of NS models. In Norway, Kobierska et al. (2017) evaluated the impacts of record lengths on the performance
of ST models with different combinations of distributions and estimation methods and found that there is no clear threshold
of record length about using a three-parameter distribution or a two-parameter distribution under ST condition.

The last concern is the engineering design problem based on the NS model. Theoretically, we can predict future annual
flood distribution by extrapolating the statistical parameters of the established NS model. As a result, the predicted future
flood distributions vary from one year to another year, which brings about new challenge for design flood estimation.

Under the framework of NFFA, if we still follow the design method under stationarity, we can obtain annual design flood
for a given return period, which is impractical for engineering design since the relationship between design flood and
return period is no longer one-to-one. To address the problem of design flood estimation in NFFA, researchers have carried

out many studies and developed several design flood methods in recent years (Olsen et al. 1998; Parey et al. 2007, 2010;
Cooley 2013; Rootzén & Katz 2013; Salas & Obeysekera 2014; Acero et al. 2017, 2018; Hu et al. 2018; Wang et al. 2019;
Byun & Hamlet 2020; Lu et al. 2020; Yan et al. 2020). Yan et al. (2019a) comprehensively compared different methods
and recommended the use of average design life level (ADLL) and equivalent reliability (Hu et al. 2018). Byun & Hamlet

(2020) developed an NS Monte Carlo method to address NS design problems by explicitly accounting for the projected
changes of extreme hydrometeorological events. However, the effects of flood record length on the estimation of NS
design flood have not been reported, which deserves more attention considering the larger uncertainties in the calculation

of design flood with longer return period using relatively short flood series (Kjeldsen et al. 2014; Machado et al. 2015; Enge-
land et al. 2017; Strupczewski et al. 2017; Hu et al. 2020; Kochanek et al. 2020).

The aforementioned concerns are all related to the record length of flood series. There is a consensus that all the sampling

schemes, parameter estimation and design flood estimation can be significantly influenced by the available flood record
length. In Norway, dams should be able to withstand extreme floods with high return periods, such as 500 years or 1,000
years, based on the dam safety regulations of Norway (Lovdata 2010). Besides, infrastructures should withstand 20-, 200-,

or 1,000-year return period flood events, resting with the impacts of flood events (TEK10 2016). Under ST condition, typically,
a minimum of 30 years of flood samples is required for FFA (Stedinger et al. 1993; Midttømme et al. 2011; Kobierska et al.
2017). Luke et al. (2017) conducted NFFA using 1,250 annual maximum discharge records throughout the USA with record
length ranging from 30 to 65 years, in which the record length of about 75% series is between 35 and 45 years. Yan et al.
(2017a) conducted NFFA using annual maximum flood series (AMFS) with record lengths of 59, 62 and 66. Parey et al.
(2010) constructed the NS model using 106 years of annual maximum temperature data. However, when we turn to nonsta-
tionarity, what are the record length requirements for NFFA with the expected accuracy or uncertainty? And how the record

length might influence the predictive capabilities of NS models and the estimation of NS design flood? In this study, we
attempted to answer these questions. Therefore, the objectives of this study are: (i) to evaluate the predictive capabilities
of NS and ST models with varying flood record lengths, (ii) to examine the effects of varying flood record lengths on the
://iwaponline.com/hr/article-pdf/52/6/1596/982770/nh0521596.pdf
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NS and ST design floods and associated uncertainties and (iii) to provide guidance for the probable requirements of record

length for NFFA with the expected accuracy or uncertainty. To achieve these objectives, 20 AMFS with a record length of
larger than 100 years in Norway were selected for illustration purposes.
2. STUDY AREA AND DATA

In this study, a number of annual maximum flood records of hydrological stations in Norway was used for the purpose of
evaluating the effects of varying record lengths on model performance, predictive capabilities and design flood estimation

of GEV (generalized extreme value)-ST and GEV-NS0. Initially, we collected flood data of 74 hydrological stations through-
out the Norwegian mainland from the Norwegian Water Resources and Energy Directorate (NVE). Figure 1 presents the
geographical location and data information of the collected stations. Then, only the data sets with more than 100 observations

were reserved to ensure the availability of at least 70 observations for the maximum record length in the fitting period and 30
observations in the evaluation period. Finally, the long flood records of 20 watersheds throughout Norway were chosen for
illustration purposes (including 2 stations with 99 observations).

Hydrological variables are affected by both climate and land-use/land-cover changes to facilitate the study of climate

change and its impact on hydrological variability, and a Hydrological Reference Dataset (HRD) consists of good-quality
long-term data series not influenced by human activities causing non-climate-related variability or change was constructed
by Norwegian Water Resources and Energy Directorate (NVE) (Fleig et al. 2013). HRD consists of 250 reference stations

throughout Norway. One of the selection criteria is the degree of river basin development. Particularly, the proportion of
Figure 1 | (a) Location information of the hydrological stations and station with record length of larger than 100 years. (b) The number of
available stations with observations in given years. (c) Histogram of record lengths of available stations in this study. (d) Trend detection
results of available stations.
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urban area of the 250 reference stations is lower than 10%. The other criterion is the absence of significant regulations, diver-

sions, or water use. The selected 250 potential reference stations are classified as ‘unregulated’ in the reports on NVE’s
network of streamflow stations (Pettersson 2003; Kleivane 2006). In this study, two of the final selected nine stations are
included in the HRD. For the remaining stations, similar criteria of no significant regulations and land-use/land-cover

changes were used. For these reasons, the insensitive land-use and land-cover change as well as other minor physical changes,
if any, are not explicitly considered in the study.

The main characteristics of the selected 20 watersheds, including the drainage areas, the geographical locations and start-
ing and end years of the observations, are presented in Table 1. Previous studies have documented the existence of significant

trend in the annual maxima and peaks over threshold in some regions of Norway (Vormoor et al. 2015, 2016; Debele et al.
2017). In this study, the trend-free pre-whitening Mann-Kendall test (TFPW-MK) (Yue et al. 2002) was employed to examine
the trend of the selected AMFS by removing the effects of trend and serial correlation on the examination results (Table 1).

The trend is statistically significant at 5% significant level if the P-value in Table 1 is smaller than 0.05. It should be mentioned
that TFPW-MK suffered from type-1 error and Serinaldi & Kilsby (2016) proposed a corrected version called the TFPWcu
method. See Serinaldi & Kilsby (2016) for the mathematical and numerical demonstration of TFPW flaws and the

TFPWcu method, and see Serinaldi et al. (2020) for detailed discussion about the errors resulting from this superficial appli-
cation of statistical analysis.
3. METHODOLOGY

In this section, we describe how the effects of varying record lengths are considered in NFFA from model construction to
design flood estimation. The flowchart of this study is presented in Figure 2.
Table 1 | Data Information of the selected 20 watersheds with long record lengths in Norway

Station_ID Name Area (km²) Data period Record length Longitude Latitude P-value

2.32 Atnasjø 463.3 1916–2015 100 10.22 61.85 0.095

2.145 Losna 11,200 1896–2017 122 10.28 61.33 0.022*

2.614 Rosten 1,833 1917–2015 99 9.40 61.86 0.685

2.1088 Glomma ved Skogmuseet 15,500 1871–2017 147 11.56 60.87 0.000*

12.228 Kistefoss 3,703 1917–2015 99 10.36 60.22 0.050*

16.23 Kirkevollbru 3,845.4 1906–2015 110 9.04 59.69 0.001*

19.127 Rygenetotal 3,946.4 1900–2015 116 8.67 58.41 0.011*

20.3 Flaksvatn 1,780 1900–2017 118 8.20 58.33 0.719

22.4 Kjæøemo 1,757.7 1897–2015 119 7.53 58.12 0.115

27.24 Helleland 184.7 1897–2015 119 6.15 58.53 0.009*

41.1 Stordalsvatn 130.7 1913–2015 103 6.01 59.68 0.340

48.1 Sandvenvatn 470 1908–2017 110 6.55 60.01 0.502

72.77 Flåm bru 263 1908–2017 110 7.12 60.84 0.020*

88.4 Lovatn 234.9 1900–2015 116 6.89 61.86 0.003*

133.7 Krinsvatn 206.6 1916–2015 100 10.23 63.80 0.187

152.4 Fustvatn 525.7 1909–2015 107 13.31 65.91 0.019*

191.2 Øvrevatn 526 1914–2015 102 17.94 68.86 0.679

234.18 Polmak 14,161.4 1912–2015 104 28.02 70.07 0.161

311.4 Femundsenden (Femunden) 1,790 1896–2017 122 11.94 61.92 0.081

311.6 Nybergsund 4,424.9 1909–2015 107 12.32 61.26 0.413

‘*’ denotes the trend is significant at 5% significance level.
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3.1. Setting of varying record length scenarios and the split-sample testing method

To assess the effects of record lengths on model performance, predictive capabilities and design flood estimation, different

record length scenarios are generated. For an observed AMFS zt(t ¼ 1, . . . , n), we assume there is a hydrological project
to be constructed with a design life of 30 years within the observation years. Thus, the predetermined observations
zft(t ¼ 1, . . . , n�) with record length n* in the fitting period and assumed future floods zet (t ¼ n� þ 1, . . . , n� þ 30) with a

record length of 30 in the evaluation period are determined from the subset of the entire AMFS. The predetermined
record lengths n* are sampled every 5 years from 30 to n�

max, which is given by the following equation:

n�
max ¼ 5� floor[(n� 30)=5] (1)

where function floor returns the round down of (n� 30)=5, and 30 is the design life of a project. Herein the split-sample test-

ing method is used. For example, if there are 106 observations, n�
max is equal to 75 and thus the record lengths are set to be 30,

35, 40,…, 75. Subsequently, both ST GEV (GEV-ST) and NS GEV (GEV-NS) models are built for each predetermined record
length in the fitting period, and the following 30 years’ observations are assumed to be the design lifespan of a hydrological
om http://iwaponline.com/hr/article-pdf/52/6/1596/982770/nh0521596.pdf
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project, which is retained for evaluating the predictive capabilities and estimating the design flood in the evaluation period

(Figure 3).

3.2. NFFA with varying record lengths (fitting period)

3.2.1. NS GEV model

In this study, we focus on the NFFA using single distribution rather than the nonstationarity caused by abrupt change or
mixed flood generation mechanisms. GEV distribution is often used to model the annual maxima, such as AMFS, under

the ST context. In the fitting period, for the AMFS zft(t ¼ 1, . . . , n�), the cumulative distribution function (CDF) of GEV-
ST model is given by the following equation:

G(zftjm, s, 1) ¼ exp {�[1þ 1(zft � m)=s]
�1=1

}

1þ 1(zft � m)=s . 0

(
, t ¼ 1, . . . , n� (2)

where m, s . 0 and 1 are the location, scale and shape parameters of GEV-ST model, respectively. However, under NS con-
dition, the statistical parameters of GEV model can be modeled as a function of covariates, such as time, to capture the trend
of AMFS. The CDF of GEV-NS model is as follows:

Gt(z
f
tjmt, st, 1t) ¼ exp {�[1þ 1t(z

f
t � mt)=st]

�1=1t
}

1þ 1t(z
f
t � mt)=st . 0

(
, t ¼ 1, . . . , n� (3)
Figure 3 | Schematic diagram of varying record length scenarios using moving windows. The yellow rectangular boxes indicate the prede-
termined record lengths in the fitting period, increased by 5 years in each scenario. The light blue boxes represent the assumed 30-year lifespan
of a project, moving with the increase of predetermined record lengths. It should be noted that there are more scenarios in our study than the
six scenarios displayed above. Please refer to the online version of this paper to see this figure in color: http://dx.doi.org/10.2166/nh.2021.026.
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where Gt(�) denotes the time-varying CDF of GEV-NS model. mt, st . 0 and 1t are the time-varying location, scale and shape

parameters of GEV model, respectively, and t is the time scale. The time-varying statistical parameters, varying from one year
to another year, are estimated based on the whole trend of the entire AMFS. Theoretically, although all three statistical par-
ameters can be time-varying, the shape parameter in Equation (3) is sensitive and difficult to estimate (Cheng & Aghakouchak

2014; Du et al. 2015). Besides, the aim of this study is not to select the optimal model for a single basin, but to investigate the
impacts of record lengths in NS frequency analysis. Thus, the structure of GEV-NS models should be simplified and fixed for
each record length. The GEV-NS models only considering the time-varying location parameter become one of the most
widely used GEV-NS models in practical applications. This kind of simplified GEV-NS models can generate realistic

design quantiles consistent with the probabilistic behavior of extreme events (Cheng & Aghakouchak 2014; Sarhadi &
Soulis 2017), which is described as follows:

G�1
t (1� pjmt, s, 1) ¼ m0 þ m1 � tþ s

1
� [(� ln (1� p))�1 � 1], t ¼ 1, . . . , n� (4)

where G�1
t (�) is the time-varying inverse CDF of GEV-NS model. p is the annual exceedance probability. m0 and m1 are the

model parameters to model the change of location parameter mt, that is mt ¼ m0 þ m1 � t. The GEV-NS model in Equation (4)
is simplified and convenient, considering that the shape parameter 1 of GEV is quite sensitive and difficult to be estimated.

Therefore, in this study, the GEV-NS model is constructed based on Equation (4) as done by previous researchers (Zwiers
et al. 2010; Westra et al. 2013; Luke et al. 2017; Um et al. 2017).

3.2.2. Assessment of model performance for the fitting period

In this study, both GEV-ST and GEV-NS models with linearly varying location parameter, denoted by GEV-NS0, are built for

each predetermined record length. Thus, to assess the fitting qualities and compare the difference between GEV-ST and GEV-
NS0, the Akaike information criterion (AIC) (Akaike 1974) is employed, which is described as follows:

AIC ¼ �2 ln (z)þ 2r (5)

where r is the number of independently adjusted parameters of the model. z is the maximum likelihood value of the estab-
lished model. It should be noted that both the statistical parameters of GEV-ST and GEV-NS0 are estimated by the maximum

likelihood method. Thus, z can be estimated by calculating the maximum value of likelihood function via deriving the partial
derivatives of the log-likelihood function, which is, for instance, lnL(ujzft) ¼ ln

Qn�

t¼1
g(zftjm, s, 1) for the GEV-ST model.

3.3. Evaluation of predictive capabilities with varying record lengths (evaluation period)

For each predetermined record length, the likelihood function is used to evaluate the predictive capabilities of both GEV-ST

and GEV-NS0. Theoretically, the likelihood function can provide information about how plausible the estimated statistical
model is with the observations zet (t ¼ n� þ 1, . . . , n� þ 30) during the evaluation period. For the GEV-ST model, the likeli-
hood function L(ujzet ) for the evaluation period is described as follows:

L(ujzet ) ¼
Yn�þ30

t¼n�þ1

g(zet jm, s, 1) (6)

where g(�) is the probability density function (PDF) of GEV, and n� is the record length of predetermined observations. How-

ever, the likelihood function L(utjzet ) of GEV-NS model for the evaluation period is defined as follows:

L(utjzet ) ¼
Yn�þ30

t¼n�þ1

g(zet jmt, s, 1) (7)

where ut represents the time-varying statistical parameters. It can be seen from Equations (6) and (7) that under ST condition,
the likelihood function is evaluated based on a set of invariant statistical parameters, whereas under NS condition, the like-

lihood function is evaluated based on variant statistical parameters.
Besides, the probabilistic coverages were also used to assess the predictive capabilities of GEV-ST and GEV-NS0. Theor-

etically, the percentage of flood observations below the prescribed percentiles, namely 5th, 25th, 50th, 75th and 95th
om http://iwaponline.com/hr/article-pdf/52/6/1596/982770/nh0521596.pdf
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percentiles, should be 5, 25, 50, 75 and 95%. The absolute difference between theoretical and actual probabilistic coverages,

denoted by Dpc, can be calculated by the following equation:

Dpc ¼ jPCT � PCAj
PCA ¼ countif(zt , percentiles)=n

�
(8)

where PCT and PCA are the theoretical and actual probability coverages, respectively, and PCT ¼ 5, 25, 50, 75 and 95%. per-
centiles denote the 5th, 25th, 50th, 75th and 95th percentiles. n represents the number of observations retained in the
evaluation period and equals 30 in this study.

3.4. NS design floods and uncertainties with varying record lengths

3.4.1. Average design life level

In this study, the ADLL method is used to solve the NS hydrological design problem using GEV-NS0. The ADLL method was
proposed by Yan et al. (2017a) based on the concept of annual average reliability, denoted by REave

T1�T2
, under NS context.

REave
T1�T2

is defined as follows (Read & Vogel 2015):

REave
T1�T2

¼ 1
T2 � T1 þ 1

XT2

t¼T1

(1� pt) ¼ 1
T2 � T1 þ 1

XT2

t¼T1

Gt(zqjut) (9)

where pt is the time-varying nonexceedance probability, zq is the design quantile over the design life of a hydrological project
to be constructed from T1 to T2. The ADLL method assumes that the annual average reliability corresponding to zq should be

equal to the yearly reliability 1� 1/m for the return period m. Thus, the m-year design quantile zADLL
T1�T2

(m) estimated by the
ADLL method can be determined by the following equation:

1
T2 � T1 þ 1

XT2

t¼T1

Gt(zADLL
T1�T2

(m)jut) ¼ 1� 1=m (10)

ADLL is recommended for practical use because it has associated design floods with the design life period of projects and is
able to yield reasonable design quantiles and confidence intervals (CIs). See Yan et al. (2017a), which compared different NS
design methods and recommended the ADLL method, for details of the advantages of ADLL. It should be noted that the

maximum record length is equal to the full record length when analyzing the effects of record lengths on design flood quan-
tiles and associated CIs. In addition, the coefficient of variation (CV) of design flood is also estimated for each record length
using the nonstationary nonparametric bootstrap (NNB) method to assess the stability of GEV-ST and GEV-NS0.

3.4.2. Uncertainty analysis using the NNB method

In this study, to comprehensively evaluate the effects of record lengths on the ST and NS design results, the uncertainties or

CIs of design floods estimated by the ADLL method are also calculated based on the NNB method. The advantage of NNB
model is that it depends strictly on the available data without any hypotheses and can be implemented regardless of model
complexity. In the NNB method, first, an NS model is used to fit the original observations. Then, the original observations are
transformed to identically distributed residuals, and the transformed residuals are resampled with replacement and back-

transformed to obtain the new samples. Next, the same NS model constructed in the first step is employed to fit the boot-
strapped new samples and estimate corresponding design quantiles. Repeat the above steps for a large number of times
and finally determine the CIs of design quantiles. See Obeysekera & Salas (2014) and Yan et al. (2017a) for detailed infor-

mation and operating steps about the NNB method.
4. RESULTS AND DISCUSSION

4.1. NFFA with varying flood record lengths

According to the results of the TFPW-MK test, 9 of the 20 selected AMFS exhibited a significant increasing or decreasing
trend at 5% significant level, as displayed in Figure 4. Then, NS frequency analysis of the AMFS of the nine stations was
://iwaponline.com/hr/article-pdf/52/6/1596/982770/nh0521596.pdf



Figure 4 | AMFS of the selected nine stations with increasing or decreasing trends.
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carried out using the generalized additive models for location, scale and shape (GAMLSS) package available in the R
language platform.

Both GEV-ST and GEV-NS0 were constructed for different record length scenarios defined in Section 3.1. We evaluated
and compared the model performance of GEV-ST and GEV-NS0 using the AIC values. As shown in Figure 5, for eight out of
the nine stations, the AIC values of GEV-ST were eventually larger than those of GEV-NS0 with the increase of record

lengths, indicating the better performance of GEV-NS0 particularly for samples with large record lengths. Furthermore,
the differences between AIC values of GEV-ST and GEV-NS became larger with the increase of record lengths except for
stations 12.228 and 19.127. Quantitatively, for 8 out of the 9 stations, the biggest AIC differences in Figure 5 are larger

than 5, and for 2 out of the 9 stations, the biggest AIC differences are around or larger than 10, which confirms the advantage
of the GEV-NS0. Besides, we also found that the superiority of GEV-NS0 starts to emerge roughly for record lengths of larger
than 60 years, indicating the necessity of collecting more flood samples in NFFA rather than the minimum requirement of 30
samples in conventional FFA.

4.2. Predictive capabilities of GEV-ST and GEV-NS models with varying record lengths

Likelihood values were employed to evaluate the predictive capabilities of GEV-ST and GEV-NS0. As shown in Figure 6, for
majority stations (six out of nine stations), the likelihood values of GEV-NS0 are eventually higher than those of the GEV-ST

models for larger record length, particularly when the record length is larger than 60 years. It should be mentioned that the
likelihood values in Figure 6 may be affected by high uncertainty for small samples. Besides, we also examined the difference
between theoretical probability coverage and actual probability coverages which are the percentage of flood observations

under 5th, 25th, 50th, 75th and 95th percentiles, denoted by D5, D25, D50, D75 and D95, respectively. As shown in Figures 7
and 8, the average value of D5 is smaller than 10% for both GEV-ST and GEV-NS0 when record length is larger than 60,
while the average value of D95 is smaller than 5% when record length is larger than 40, indicating the good predictive
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Figure 5 | Absolute differences of the AIC values calculated using the AIC values of GEV-ST models minus those of GEV-NS models. The
values larger than zero indicate the better performance of GEV-NS models, and vice versa.
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capabilities of extreme events for both GEV-ST and GEV-NS0. Furthermore, the results indicate that the difference in nearly
all five plots tends to be smaller with the increase of record lengths for GEV-NS0, particularly when the record length is

roughly longer than 60 years. While for the GEV-ST models, there is no significant decrease of the five plots with the increase
of record lengths, and D25 and D50 even exhibit upward trends. It should be mentioned that the difference of probability cov-
erage in Figure 7 may be affected by less stations for larger record lengths. Particularly, for D25 and D50, the decreasing trends

become more significant for the two largest sample sizes of 90 and 95. The ‘95-size’ value relies on station 2.1088, while the
‘90-size’ average is taken over stations 2.145 and 2.1088. In fact, decreasing trend can still be identified regardless of these two
record lengths, particularly compared with the increasing trends of D25 and D50 for the GEV-ST model.

The above results confirm the better predictive capabilities of GEV-NS0 compared with GEV-ST models for most stations.
The enhanced model performance and predictive capabilities of GEV-NS0 can be attributed to their better capture of the
variability of extreme flood events when new flood samples are added into the flood population.

4.3. Influence of varying record lengths on NS design floods and uncertainties

After the evaluation of model performance and predictive capabilities of both GEV-ST and GEV-NS0, we further examine the
influence of record length on design flood quantiles and associated CIs. Assuming the design life of hydrological structures is 30

years, both GEV-ST and GEV-NS0 were employed to estimate design floods using the ADLL method for each record length.
For each station, we first evaluated the stability of the established GEV-ST and GEV-NS0 by calculating the CVs of the 20-,

50- and 100-year design flood quantiles for each record length. Figure 9 shows the evolution of CV as a function of record
://iwaponline.com/hr/article-pdf/52/6/1596/982770/nh0521596.pdf



Figure 6 | Likelihood values of GEV-ST (black lines) and GEV-NS (red lines) models. Please refer to the online version of this paper to see this
figure in color: http://dx.doi.org/10.2166/nh.2021.026.
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length for all the selected nine stations. It is shown that for both ST and NS conditions, the CVs of 20-, 50- and 100-year design
floods tend to be smaller with the increase of record length for nearly all stations, showing the increasing stability of the estab-
lished statistical models as record lengths increase. Besides, when the record length is approximately larger than 50–60 years,

the fluctuation of CV becomes gentle for most stations. It should be mentioned that for stations 19.127, 27.24 and 152.4, the
stabilization of both models occurs for a record length of smaller than 60. As for the comparison of the stability of GEV-ST
and GEV-NS0, the CVs of GEV-ST are smaller than those of GEV-NS for all the three return periods, which is due to the
more complex model structure of GEV-NS0.

Figure 10 summarizes the evolution of 100-year design floods and associated 95% CIs with the increase of record length
under both ST and NS contexts. The design values yielded by the GEV-ST model and the simplified GEV-NS model based on
the ADLL method are similar, particularly with the increase of record length. For six out of the nine stations, the difference

between 100-year design flood of ST and NS models is relatively small with the increase of record length or even becomes
smaller when record length is larger than 50–60 years, see stations 12.228 and 19.127. Thus, it is difficult to discriminate
between these two design strategies for a larger record length. For the rest of the stations, a representative example is station

2.1088, for which the difference between ST and NS design floods becomes larger when the record length is larger than 70
years and the largest difference is obtained when record length is 145 years. In terms of CIs, it is found that the associated
bootstrapped 95% CIs of the 100-year design flood become smaller as the record lengths increase for both GEV-ST and GEV-

NS0, showing the advantage of collecting more flood samples under both ST and NS conditions. In addition, there is no sig-
nificant difference between the CIs of ST and NS design floods for most stations.
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Figure 7 | The difference between theoretical probability coverage and actual probability coverages and the percentage of flood obser-
vations under 5th, 25th, 50th, 75th and 95th percentiles, denoted by D5, D25, D50, D75 and D95, respectively, using GEV-ST models. The
difference was calculated using Equation (8), and ensemble mean was the average difference of nine stations.

Hydrology Research Vol 52 No 6, 1607

Downloaded from http
by guest
on 13 March 2024
4.4. Discussions

There is still a hot academic debate on whether we should switch to NS frequency analysis, considering the complex model
structure, prediction of future distributions and the uncertainties associated with NS hydrological design. However, there is
no doubt that we are living in a changing world. Thus, this study focuses on what we could do if the world is NS. Again, it

should be emphasized that nonstationarity cannot be inferred only by trend tests but should be confirmed by attribution
analysis, statistical analysis and empirical analysis (Milly et al. 2015; Yan et al. 2017a). As discussed by Serinaldi et al.
(2018), trend analysis can at most be used as statistical tools for preliminary screening whose outcome should be carefully

checked and complemented with exogenous information. If a clear physical mechanism related to a predictable evolution
of the properties of the process at hand is not identified, we cannot make conclusions about the reason of rejection or
lack of rejection, since multiple factors not included in the null and alternative hypotheses can actually play a role. Further-
more, because of the different availability of flood observations all over the world, it is crucial to assess the impacts of varying

record lengths on NFFA for practical reasons, and our research can provide technical guidance for engineers and
policymakers.
://iwaponline.com/hr/article-pdf/52/6/1596/982770/nh0521596.pdf



Figure 8 | The difference between theoretical probability coverage and actual probability coverages and the percentage of flood obser-
vations under 5th, 25th, 50th, 75th and 95th percentiles, denoted by D5, D25, D50, D75 and D95, respectively, using GEV-NS models. The
difference was calculated using Equation (8), and ensemble mean was the average difference of nine stations.
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The results of this study may be affected by the employed NS model. NS models make sense if we know a priori mechanism

of change, and therefore we can set up parameters varying accordingly. Otherwise, we need to consider the model uncertainty
including a variety of possible options and combinations in terms of covariates and link functions. Theoretically, all the three
statistical parameters can be time-varying, but the shape parameter is sensitive and difficult to estimate. In practice, either

location or scale parameters are likely to change under a changing climate, but in this study, only the location parameter
of GEV-NS0 is time-varying to facilitate the model construction and investigation procedures. Although this kind of simplified
GEV-NS0 model may reduce the model set and neglect an infinite set of possible alternative NS models, the aim of this study
is not to select the optimal model for a selected basin but to investigate the impacts of record lengths on NFFA. It is a trade-off

choice between the complexity of model structure of the NS model and the practical applications of NS model in this study.
Besides, to strengthen the physical mechanism of NS models, researchers have recommended the use of covariates more rel-
evant to flood process in the construction of NS models to the regions where human activity is an important contributor. In

this study, we used time as a covariate for two reasons: (1) to focus the study on the main objectives, which are to examine the
impacts of flood record lengths on the NS and ST design floods and associated uncertainties, and to explore the probable
requirements of flood record length in NFFA and (2) human activities on the selected Norwegian catchments are not
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Figure 9 | Evolution of the CVs of 20-, 50- and 100-year design flood with the increase of record lengths under both ST (dashed lines) and NS
(solid lines) conditions.
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significant and the used maximum extreme values are normally less affected by non-climate factors compared with daily
values or low-flow values. From the perspective of feasibility, in this study, all the record lengths of selected stations are

larger than 100 years. So, it is very difficult to obtain physical covariates with such a long record length. It should be strength-
ened that time covariate is just a simple reflection of the gradual change of time series, and it lacks physical meaning. Thus, in
future, when more observations data are available, it is feasible to incorporate physical covariates which are relevant to the

flood process in the NS modeling.
Theoretically, the required sample size for a given analysis depends on the target statistic of interest (e.g., 50-, 100- and

1,000-year design flood) and required accuracy. In practical flood design problems, hydrological engineers work with the
available flood observations they have and account for the corresponding uncertainties to a targeted return period. The rec-

ommended minimum sample size in flood design in the handbook of hydrology is to guarantee the reliability of design results
for cases with no specific degrees of uncertainty in advance, and urge the hydrological engineers to collect more samples or
turn to ‘peaks over threshold’ sampling scheme to reduce the huge uncertainty when estimating 1,000-year design flood using

limited observations. Based on the results of this study, a minimum of 60 years of observations is recommended for NFFA to
guarantee the superiority of the NS models. It should be mentioned that the threshold of 60-year observations switching from
FFA to NFFA is not a ‘magic’ number. It is inferred based on fitting quality, predictive capabilities and the stability of GEV-
://iwaponline.com/hr/article-pdf/52/6/1596/982770/nh0521596.pdf



Figure 10 | Evolution of the 100-year design flood (solid lines) and associated CIs (dashed lines) with the increase of record lengths
under both ST (red lines) and NS (blue lines) conditions. Please refer to the online version of this paper to see this figure in color: http://dx.doi.
org/10.2166/nh.2021.026.
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NS0 for most selected stations in Norway for estimating 20-, 50- and 100-year design flood, using GEV-NS0, which is an esti-

mation that may depend on the nature of the time series, its memory, its distribution, the models used and the level of
accuracy required. With that said, we still think that the recommendation of a plausible standard to guide the estimation
of design flood for engineers, particularly for cases with limited observations, is beneficial for pushing forward the practical

application of NS frequency analysis. Besides, it should be noted that in the practical design procedure, no matter whether the
available observations satisfy the minimum requirement of record length, performing a cost–benefit (multicriteria) analysis
considering the range of uncertainty corresponding to a predefined design value, thus getting the solution that optimizes
the required criteria (i.e., structural and economic) is important. Since a number of other variables that are not specified

in this study may affect the required sample size. For example, if we improve the level of required accuracy of design
values in a specific problem, a series with 60 observations is likely to be not enough, or if we use the NS model with a different
model structure whose location parameter and scale parameter are both time-varying, the required sample size may be differ-

ent. Besides, in this study, only two stations’ record lengths are larger than 120 years, influencing the analysis of probability
coverage of GEV-ST and GEV-NS0. With the increase of observations in future, to promote the development of NFFA,
further studies concerning the record length required for NFFA in other basins worldwide should be carried out.
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5. CONCLUSIONS

The aim of this study was to evaluate the influence of record length on the ST and NS FFA. This aim was achieved using the
split-sample testing for the stations with long record lengths (larger than 100 years), and several goodness-of-fit measures were
used to evaluate the model performance and predictive capabilities of statistical models. Subsequently, the ADLL design

method was employed to predict NS design floods, and the NNB was used to calculate CIs by resampling the original
flood observations for record lengths varying from 30 to 145 years.

Based on the aforementioned results, the main conclusions of this study are as follows:

1. For frequency analysis of NS flood extremes, the performance of GEV-NS0 becomes better with the increase of record
length and particularly they outperform GEV-ST models when record length is larger than 60 years in the selected

basins in Norway, indicating the necessity of collecting more flood samples in NFFA rather than the minimum require-
ment of 30 samples in traditional FFA.

2. The predictive capabilities of extreme events (95th and 5th percentiles) are good for both GEV-ST and GEV-NS0 in the

selected basins in Norway. However, compared with GEV-ST models, the difference between theoretical and actual prob-
abilistic coverages becomes smaller, as record lengths increase for GEV-NS0. More importantly, the likelihood values of
GEV-NS0 are larger than those of GEV-ST models when the record length is larger than 60 years for most stations, indi-

cating the better predictive capabilities of GEV-NS0. The improved model performance and predictive capabilities of
GEV-NS0 are thought to be attributed to their better capture of the variability of extreme flood events when more
flood samples are added into the flood population.

3. The stability of the established GEV-ST and GEV-NS0 is improved, as record lengths increase since the CVs of 20-, 50- and

100-year design floods become smaller with the increase of record length. Particularly, the fluctuation of CV becomes
gentle when the record length is roughly larger than 50–60 years for most stations in the selected basins. Besides, the
CVs of GEV-ST are smaller than those of GEV-NS0.

4. The difference of 100-year design flood estimated using the ADLLmethod between GEV-ST and GEV-NS0 is relatively small or
even becomes smallerwhen record length is larger than 50–60 years. In addition, the bootstrapped 95%CIs of the 100-year design
flood become smaller with the increase of record length for bothGEV-ST andGEV-NS0models in the selected basins inNorway.
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