The objective of this study was to compare approaches to modeling surface runoff due to summer and autumn storms on a cultivated field. The data consisted of measurements performed every 15 minutes during rainfall-surface runoff events in 1993. A transfer function model was formulated using measured rainfall or rainfall excess as an input and surface runoff as an output. The physical models were based on the kinematic wave approximation of the Saint Venant equations. Surface runoff was assumed to flow first as an overland flow on a level field and second in rills. The results showed that the transfer function model using rainfall excess as an input, and the implicitly solved rill flow model performed the best with respect to the fitness coefficients, which denoted the efficiency of the model. The testing of the models using fixed parameter combinations indicated that an event based parameter estimation was not applicable in verifying the models to changing conditions.

This content is only available as a PDF.