Precipitation is one of the main components in the water balance, and probably the component determined with the greatest uncertainties. In the present paper we focus on precipitation (mainly rain) over the Baltic Sea as a part of the BALTEX project to examine the present state of the art concerning different precipitation estimates over that area. Several methods are used, with the focus on 1) interpolation of available synoptic stations; 2) a mesoscale analysis system including synoptic, automatic, and climate stations, as well as weather radar and an atmospheric model; and 3) measurements performed on ships. The investigated time scales are monthly and yearly and also some long-term considerations are discussed. The comparison shows that the differences between most of the estimates, when averaged over an extended period and a larger area, are in the order of 10-20%, which is in the same range as the correction of the synoptic gauge measurements due to wind and evaporation losses. In all data sets using gauge data it is important to include corrections for high winds. To improve the structure of precipitation over sea more focus is to be put on the use of radar data and combinations of radar data and other data. Interpolation methods that do not consider orographic effects must treat areas with large horizontal precipitation gradients with care. Due to the large variability in precipitation in time and space, it is important to use long time periods for climate estimates of precipitation
Ship measurements are a valuable contribution to precipitation information over sea, especially for seasonal and annual time scales.