Evaporation is a major component of the hydrological cycle. It is an important aspect of water resource engineering and management, and in estimating the water budget of irrigation schemes. The current work presents the application of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) approaches for modeling daily pan evaporation using daily climatic parameters. The neuro-fuzzy and neural network models are trained and tested using the data of three weather stations from different geographical positions in the U.S. State of Illinois. Daily meteorological variables such as air temperature, solar radiation, wind speed, relative humidity, surface soil temperature and total rainfall for three years (August 2005 to September 2008) were used for training and testing the employed models. Statistic parameters such as the coefficient of determination (R2), the root mean squared error (RMSE), the variance accounted for (VAF), the adjusted coefficient of efficiency (E1) and the adjusted index of agreement (d1) are used to evaluate the performance of the applied techniques. The results obtained show the feasibility of the ANFIS and ANN evaporation modeling from the available climatic parameters, especially when limited climatic parameters are used.
Skip Nav Destination
Article navigation
Research Article|
December 01 2011
Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN)
J. Shiri;
1Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
E-mail: [email protected]
Search for other works by this author on:
W. Dierickx;
W. Dierickx
2Geraardsbergsesteenweg 18, 9860 Oosterzele, Belgium
Search for other works by this author on:
A. Pour-Ali Baba;
A. Pour-Ali Baba
3MSc Student of Agronomy, Islamic Azad University, Myaneh Branch, Iran
Search for other works by this author on:
S. Neamati;
S. Neamati
1Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Search for other works by this author on:
M. A. Ghorbani
M. A. Ghorbani
1Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
Search for other works by this author on:
Hydrology Research (2011) 42 (6): 491–502.
Article history
Received:
February 18 2010
Accepted:
December 13 2010
Citation
J. Shiri, W. Dierickx, A. Pour-Ali Baba, S. Neamati, M. A. Ghorbani; Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrology Research 1 December 2011; 42 (6): 491–502. doi: https://doi.org/10.2166/nh.2011.020
Download citation file: