Water resources assessment activities in inadequately gauged basins are often significantly constrained due to the insufficiency or total lack of hydro-meteorological data, resulting in huge uncertainties and ineffectual performance of water management schemes. In this study, a new methodology of rainfall-runoff modelling using the powerful clustering capability of the self-organising map (SOM), unsupervised artificial neural networks, is proposed as a viable approach for harnessing the multivariate correlation between the typically long record rainfall and short record runoff in such basins. The methodology was applied to the inadequately gauged Osun basin in southwest Nigeria for the sole purpose of extending the available runoff records and, through that, reducing water resources planning uncertainty associated with the use of short runoff data records. The extended runoff records were then analysed to determine possible abstractions from the main river source at different exceedance probabilities. This study demonstrates the successful use of emerging tools to overcome practical problems in sparsely gauged basins.
Skip Nav Destination
Article navigation
Research Article|
May 08 2012
Self-organising map rainfall-runoff multivariate modelling for runoff reconstruction in inadequately gauged basins
Adebayo J. Adeloye;
1School of the Built-Environment, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK
E-mail: [email protected]
Search for other works by this author on:
Rabee Rustum
Rabee Rustum
2School of the Built Environment, Heriot-Watt University, Dubai International Academic City, Dubai, UAE
Search for other works by this author on:
Hydrology Research (2012) 43 (5): 603–617.
Article history
Received:
January 17 2011
Accepted:
September 26 2011
Citation
Adebayo J. Adeloye, Rabee Rustum; Self-organising map rainfall-runoff multivariate modelling for runoff reconstruction in inadequately gauged basins. Hydrology Research 1 October 2012; 43 (5): 603–617. doi: https://doi.org/10.2166/nh.2012.017
Download citation file: