Estimates of snow water equivalent (SWE) with ground-penetrating radar can be used to calibrate and validate measurements of SWE over large areas conducted from satellites and aircrafts. However, such radar estimates typically suffer from low accuracy in wet snowpacks due to a built-in assumption of dry snow. To remedy the problem, we suggest determining liquid water content from path-dependent attenuation. We present the results of a field evaluation of this method which demonstrate that, in a wet snowpack between 0.9 and 3 m deep and with about 5 vol% of liquid water, liquid water content is underestimated by about 50% (on average). Nevertheless, the method decreases the mean error in SWE estimates to 16% compared to 34% when the presence of liquid water in snow is ignored and 31% when SWE is determined directly from two-way travel time and calibrated for manually measured snow density.

This content is only available as a PDF.