Point process models for rainfall are constructed generally based on Poisson cluster processes. Most commonly used point process models in the literature were constructed either based on Bartlett–Lewis or Neyman–Scott cluster processes. In this paper, we utilize a class of Cox process models, termed the Markov modulated Poisson process (MMPP), to model rainfall intensity. We use this class of models to analyse rainfall data observed in the form of tip time series from rain gauge tipping buckets in a network of gauges in Somerset, southwest England, recorded by the Hydrological Radar Experiment (HYREX). Univariate and multivariate models are employed to analyse the data recorded at single and multiple sites in the catchment area. As the structure of this proposed class of MMPP models allows us to construct the likelihood function of the observed tip time series, we utilize the maximum likelihood methods in our analysis to make inferences about the rainfall intensity at sub-hourly time scales. The multivariate models are used to analyse rainfall time series jointly at four stations in the region. Properties of the cumulative rainfall in discrete time intervals are studied, and the results of fitting three-state models are presented.
Skip Nav Destination
Article navigation
Research Article|
January 02 2013
Multivariate models for rainfall based on Markov modulated Poisson processes
R. Thayakaran;
1School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park Row, Greenwich, London SE10 9LS, UK
E-mail: [email protected]
Search for other works by this author on:
N. I. Ramesh
N. I. Ramesh
1School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College, Park Row, Greenwich, London SE10 9LS, UK
Search for other works by this author on:
Hydrology Research (2013) 44 (4): 631–643.
Article history
Received:
November 15 2011
Accepted:
June 15 2012
Citation
R. Thayakaran, N. I. Ramesh; Multivariate models for rainfall based on Markov modulated Poisson processes. Hydrology Research 1 August 2013; 44 (4): 631–643. doi: https://doi.org/10.2166/nh.2013.180
Download citation file: