A novel flow regime classification scheme was applied to 141 river basins across western Europe, providing more robust analysis of space–time variability in regimes and their driving hydroclimatological processes. Regime shape (timing) and magnitude (size) were classified to regionalise long-term average flow regimes and to quantify year-to-year variation in regimes for each basin. Six long-term regime shape regions identified differences in seasonality related to latitude and altitude. Five long-term magnitude regions were linked to location plus average annual rainfall. Spatial distribution of long-term regimes reflected dominant climate and runoff generation processes. Regions were used to structure analysis of (relative) inter-annual regime dynamics. Six shape and five magnitude inter-annual regimes were identified; and regime stability (switching) assessed at pan-European, regional and basin scales. In some years, certain regime types were more prevalent, but never totally dominant. Regime shape was more stable at higher altitude due to buffering by frozen water storage-release (cf. more variable rainfall-runoff at lower altitudes). The lower inter-annual magnitude regimes persisted across larger domains (cf. higher magnitude) due to the more widespread climatic conditions generating low flow. Notably, there was limited spatio-temporal correspondence between regime shape and magnitude, suggesting variations in one attribute cannot be used to infer the other.

This content is only available as a PDF.