Possible changes in rainfall extremes in Peninsular Malaysia were assessed in this study using an ensemble of four GCMs of CMIP5. The performance of four bias correction methods was compared, and the most suitable method was used for downscaling of GCM simulated daily rainfall to the spatial resolution (0.25°) of APHRODITE rainfall. The multi-model ensemble (MME) mean of the downscaled rainfall was developed using a random forest regression algorithm. The MME projected rainfall for four RCPs were compared with APHRODITE rainfall for the base year (1961–2005) to assess the annual and seasonal changes in eight extreme rainfall indices. The results showed power transformation as the most suitable bias correction method. The maximum changes in most of the annual and seasonal extreme rainfall indices were observed for RCP8.5 in the last part of this century. The maximum increase was observed for 1-day and 5 consecutive days' rainfall amount for RCP4.5. Spatial distribution of the changes revealed higher increase of the extremes in the northeast region where rainfall extremes are already very high. The increase in rainfall extremes would increase the possibility of frequent hydrological disasters in Peninsular Malaysia.

This content is only available as a PDF.