Sensitivity analysis of hydrological model parameters is a crucial step in the calibration process of hydrological simulation. In this paper, the improved Morris method with the double-Latin hypercube sampling is proposed for global sensitivity analysis of 10 parameters of the Xin'anjiang model. In addition, the local sensitivity is analyzed based on the rate validation of the model parameters. In general, the results show those parameters about evaporation coefficient in the deep layer (C), free water storage capacity (SM), impervious area as a percentage of total watershed area (IMP), free water storage capacity curve index (EX), groundwater outflow coefficient (KG) and subsurface runoff abatement factor (KKG) are all less than 0.01, insensitive parameters; the parameters about evaporation conversion factor (K) and square times of the storage capacity curve(B) are in the range of [0.01, 0.1], less sensitive parameters; the parameter about flow out coefficient in soil (KSS) is in the range of [0.1, 0.2], a low-sensitivity parameter; the parameter abatement coefficient of mid-soil flow (KKSS) is greater than 1, a high-sensitivity parameter; the improved Morris method better reflects the existence of interactions between parameters. This research result provides a new technical approach for the sensitivity analysis of hydrological model parameters.

  • This study proposed the concept of double-Latin hypercube sampling.

  • This study improved Morris method by using the double-Latin sampling method and applied it to the sensitivity analysis of the Xin'anjiang model parameters.

This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (