This study investigated the performance of the adaptive neuro-fuzzy inference system (ANFIS), feed forward neural network (FFNN), Soil and Water Analysis Tool (SWAT), Hydrologic Engineering Center's Hydraulic Modeling System (HEC-HMS), Hydrologiska Byråns Vattenbalansavdelning (HBV), and support vector regression (SVR) models for rainfall–runoff modeling using gauged and satellite rainfall, and their fusions in the Gilgel Abay watershed, Ethiopia. Afterward, simple average ensemble (SAE), weighted average ensemble (WAE), and neural network ensemble (NNE) techniques were applied to combine the outputs of individual models under three scenarios. The performance of the models was evaluated using Nash–Sutcliffe efficiency (NSE) and root mean square error (RMSE). The results demonstrated that the ANFIS model outperformed all the other single models with validation stage NSE values of 0.864 and 0.875, and RMSE values of 23.58 and 21.84 m3/s for gauge and fusion rainfall data, respectively. Among the physical-based models, SWAT gave better modeling performance with the validation stage NSE values of 0.81 and 0.821 for gauge and fusion rainfall data, respectively. Moreover, an ensemble of artificial intelligence and physical-based models greatly improved the overall modeling performance. The NNE improved the performance of single models up to 15.7 and 21.2 5% for fusion and satellite-based rainfall modeling, respectively.

  • The study integrated machine learning models with process-based models.

  • The performance of the models was enhanced by the fusion of ground and satellite-based rainfall data for the first time.

  • Afterwards, the outputs of individual models were ensembled through three scenarios.

  • The ensemble technique improved the rainfall fusion-based and satellite-based modeling accuracy by 15.7 and 21.2%, respectively.

This content is only available as a PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).