High-resolution satellite precipitation products, which can provide a reasonable depiction of the spatial extent of rainfall, have been increasingly used to model hydrological processes. In this study, we introduced important satellite rainfall data – Fengyun (FY) precipitation product, and evaluated the data through streamflow simulation using the Soil and Water Assessment Tool model in Huifa River basin, China. Three precipitation inputs were conducted to investigate the simulation performance of the FY precipitation product: (1) available rain gauges within the watershed; (2) pixel values of FY-2 precipitation products nearest to the geographic centers of the subbasins; and (3) mean values of FY-2 precipitation pixels within the subbasins. The results showed that good model performance (defined as: NSE > 0.75; Nash–Sutcliffe efficiency: NSE) was achieved for all precipitation inputs both in the calibration and validation period. Best streamflow simulation was obtained when the model was calibrated with the third precipitation input, with NSE 0.86 and 0.84, R2 0.86 and 0.86 in the calibration and validation period. This study reveals that the FY precipitation product is a significant data source in modeling hydrological processes. Moreover, it is reasonable to use the mean values of the satellite precipitation pixels within the subbasins.

You do not currently have access to this content.