Two years of K-Band micro rain radar-2 (MRR) data are used to investigate the vertical variability of rain in an atmospheric column and assess MRR rainfall estimates accuracy from both direct rainfall measurement using the Mie Theory (i.e., MRR RR) and a Z-R relationship (Z = 300 R1.4) (i.e., MRR Rz). Two different height resolutions (HR) settings are used. A nearby Doppler weather radar KEWX (S-band) using the same Z-R relationship is found to underestimate rainfall by up to 32.2%, while MRR estimates are much closer to collocated gauge measurements. For the first three gates, MRR RR underestimates rainfall by 5.7%–60.1% for the HR of 35 meters and by 31.2%–47.9% for the 100 meter resolution, while MRR RR overestimates rainfall for higher gates at the 100 m resolution, and MRR Rz underestimates rainfall at all gates due to errors of the Z-R relationship (Z = aRb). Gates higher than 2,000 m are affected by bright band and mixed phase rainfall. Examination of the rainfall statistics suggests that the 100 m HR produces better rainfall estimates, and that the gate centered at 300 m has better performance than the gate centered at 70 m.

You do not currently have access to this content.