This study is trying to develop an alternative approach to the issues of sediment transport simulation. A machine learning method, named least square support vector regression (LSSVR) and a meta-heuristic approach, called particle swarm optimization (PSO) algorithm are used to estimate bed material load transport rate. PSO algorithm is utilized to calibrate the parameters involved in the model to facilitate a desirable simulation by LSSVR. Implementing on a set of laboratory and field data, the model is capable of performing more satisfactorily in comparison to candidate traditional methods. Similarly, the proposed method has a better performance than a specific version of decision tree method. To enhance the model, the variables are scaled in logarithmic form, leading to an improvement in the results. Thus, the proposed model can be an efficient alternative to conventional approaches for the simulation of bed material load transport rates providing comparable accuracy.

You do not currently have access to this content.