Abstract

Calibration is an important phase in the hydrological modelling process. In this study, an automated calibration framework is developed for estimating Manning's roughness coefficient. The calibration process is formulated as an optimization problem and solved using a genetic algorithm (GA). A heuristic search procedure using GA is developed by including runoff simulation process and evaluating the fitness function by comparing the experimental results. The model is calibrated and validated using datasets of Watershed Experimentation System. A loosely coupled architecture is followed with an interface program to enable automatic data transfer between overland flow model and GA. Single objective GA optimization with minimizing percentage bias, root mean square error and maximizing Nash–Sutcliffe efficiency is integrated with the model scheme. Trade-offs are observed between the different objectives and no single set of the parameter is able to optimize all objectives simultaneously. Hence, multi-objective GA using pooled and balanced aggregated function statistic are used along with the model. The results indicate that the solutions on the Pareto-front are equally good with respect to one objective, but may not be suitable regarding other objectives. The present technique can be applied to calibrate the hydrological model parameters.

You do not currently have access to this content.