Abstract

The development of computational models for analysis of the operation of water supply systems requires the calibration of pipes' roughness, among other parameters. Inadequate values of this parameter can result in inaccurate solutions, compromising the applicability of the model as a decision-making tool. This paper presents a metamodel to estimate the pressure at all nodes of a distribution network based on artificial neural networks (ANNs), using a set of field data obtained from strategically located pressure sensors. This approach aims to increase the available pressure data, reducing the degree of freedom of the calibration problem. The proposed model uses the inlet flow of the district metering area and pressure data monitored in some nodes, as input data to the ANN, obtaining as output, the pressure values for nodes that were not monitored. Two case studies of real networks are presented to validate the efficiency and accuracy of the method. The results ratify the efficiency of ANN as state forecaster, showing the high applicability of the metamodel tool to increase a database or to identify abnormal events during an operation.

You do not currently have access to this content.