Abstract

Flood forecasting relies on good quality of observed and forecasted rainfall. In Serbia, the recording rain gauge network is sparse and rainfall data mainly come from dense non-recording rain gauges. This is not beneficial for flood forecasting in smaller catchments and short-duration events, when hydrologic models operating on subdaily scale are applied. Moreover, differences in rainfall amounts from two types of gauges can be considerable, which is common in operational hydrological practice. This paper examines the possibility of including daily rainfall data from dense observation networks in flood forecasting based on subdaily data, using the extreme flood event in the Kolubara catchment in May 2014 as a case study. Daily rainfall from a dense observation network is disaggregated to hourly scale using the MuDRain multivariate disaggregation software. The disaggregation procedure results in well-reproduced rainfall dynamics and adjusts rainfall volume to the values from the non-recording gauges. The fully distributed wflow_hbv model, which is under development as a forecasting tool for the Kolubara catchment, is used for flood simulations with two alternative hourly rainfall data. The results show an improvement when the disaggregated rainfall from denser network is used, thus indicating the significance of better representation of rainfall temporal and spatial variability for flood forecasting.

You do not currently have access to this content.