Abstract

The effect of using permeable spur dikes on the produced maximum scour depth compared to that of solid spur dikes is numerically investigated. The numerical model used for such purpose is the Nays-2DH model of the International River Interface Cooperative (iRIC) software package for bed and bank erosion. The model results are verified using the experimental data collected in this study by conducting experiments on five different models of spur dikes having different opening ratios. Using the statistical performance indices, the root mean square error and the coefficient of determination, the results showed an acceptable agreement between the numerical model results for the relative maximum scour depth defined by the ratio of the maximum scour depth to the flow depth and their corresponding observed values. A new empirical equation using nonlinear regression is developed using the experimental data collected in this study and tested with another existing empirical equation available in the literature for their accuracy in determining the relative maximum scour depth.

You do not currently have access to this content.