Abstract

Geoscientists are continuously confronted by difficulties involved in handling varieties of data formats. Configuration of data only in time or space domains leads to the use of multiple stand-alone software in the spatio-temporal analysis which is a time-consuming approach. In this paper, the concept of cellular time series (CTS) and three types of meta data are introduced to improve the handling of CTS in the spatio-temporal analysis. The data structure was designed via Python programming language; however, the structure could also be implemented by other languages (e.g., R and MATLAB). We used this concept in the hydro-meteorological discipline. In our application, CTS of monthly precipitation was generated by employing data of 102 stations across Iran. The non-parametric Mann–Kendall trend test and change point detection techniques, including Pettitt's test, standard normal homogeneity test, and the Buishand range test were applied on the generated CTS. Results revealed a negative annual trend in the eastern parts, as well as being sporadically spread over the southern and western parts of the country. Furthermore, the year 1998 was detected as a significant change year in the eastern and southern regions of Iran. The proposed structure may be used by geoscientists and data providers for straightforward simultaneous spatio-temporal analysis.

You do not currently have access to this content.