Abstract

Extreme rainfall estimation is a long-standing challenge for hydrological hazard assessment and infrastructure design, particularly if considering the need to deal with climate change. Advances in statistical methods and in rainfall data availability allow for frequent updates of regional rainfall frequency analyses. These allow for new estimates that, however, cannot simply replace older ones in the risk management, due to technical, socio-economic and legislative reasons. To preserve compatibility between old and new regional estimates a multi-model approach could be used, where model uncertainties can be combined to help reach a final decision. To make this possible, one has to face the uneasy retrieval of data and results of older analyses and, quite often, non-trivial areal rainfall estimates are needed with all methods. To give an answer to these technical needs, a tool named MultiRain has been developed. The tool computes depth–duration–frequency (DDF) curves, both related to a point and integrated over an area, from multiple regional statistical analyses. The MultiRain procedure is based on Python scripting, GIS functions and web technologies, and can be performed via web-browser or in a desktop GIS environment. A demonstration version has been built using four different regional analyses proposed in a 20-years period for the North-West of Italy.

You do not currently have access to this content.