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Managing large multidimensional hydrologic datasets:

A case study comparing NetCDF and SciDB

Haicheng Liu, Peter van Oosterom, Theo Tijssen, Tom Commandeur

and Wen Wang
ABSTRACT
Management of large hydrologic datasets including storage, structuring, clustering, indexing, and

query is one of the crucial challenges in the era of big data. This research originates from a specific

problem: time series extraction at specific locations takes a long time when a large multidimensional

(MD) dataset is stored in the NetCDF classic or the 64-bit offset format. The essence of this issue lies

in the contiguous storage structure adopted by NetCDF. In this research, NetCDF file-based solutions

and a MD array database management system applying a chunked storage structure are

benchmarked to determine the best solution for storing and querying large MD hydrologic datasets.

Expert consultancy was conducted to establish benchmark sets, with the HydroNET-4 system being

utilized to provide the benchmark environment. In the final benchmark tests, the effect of data

storage configurations, elaborating chunk size, dimension order (spatio-temporal clustering) and

compression on the query performance, is explored. Results indicate that for big hydrologic MD data

management, the properly chunked NetCDF-4 solution without compression is, in general, more

efficient than the SciDB DBMS. However, benefits of a DBMS should not be neglected, for example,

the integration with other data types, smart caching strategies, transaction support, scalability, and

out-of-the-box support for parallelization.
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INTRODUCTION
In the hydrologic domain, original data collection tech-

niques with improved spatio-temporal accuracy, for

instance radar systems, are becoming increasingly prevalent.

Meanwhile, new sensor platforms such as multispectral

lidar and citizen-supplied observations provide more possi-

bilities to collect data. All kinds of simulation models

never stop running to produce essential results for

decision-making. However, large quantities of these data

are normally stored and distributed in diverse formats,

which causes professionals inconvenience in effectively pre-

paring information for different applications. Formats

widely used include Hierarchical Data Format (HDF), Net-

work Common Data Form (NetCDF) and Gridded Binary
(GRIB) which were originally designed for meteorological

purposes. Among them, NetCDF is notable for its simple

data model, ease of use, portability, and strong user support

infrastructure (Rew et al. ). It is widely applied to record

and distribute meteorological, oceanographic as well as

hydrologic observations or simulation results.

However, according to the practical experience of indus-

trial engineers, traditional NetCDF solutions perform

inefficiently in retrieving time series from large spatio-tem-

poral datasets. This is caused by the contiguous storage

structure that it utilizes to store variable values such as rain-

fall and temperature. Basically, NetCDF stores spatial grids

as a one-dimensional array according to a row-majored
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order (Figure 1(a)–1(c)). Thus, to query the value in a par-

ticular cell, the cell position in the one-dimensional array

is calculated. Extraction of a time series (Figure 1(a)) thus

becomes expensive due to accessing individual cell values,

which are widely spread over the disk, each moment in its

own one-dimensional array (Figure 1(c)). Alternatively, it is

possible to store a time series for every location as a one-

dimensional vector in NetCDF, but then retrieving a com-

plete spatial grid at one moment in time becomes the

problem.

Regarding management of large numbers of multidimen-

sional (MD) array datasets, it is natural to adopt a database
Figure 1 | The contiguous storage and the chunked storage of a three-dimensional precipitati

specific location. Only cell values in the first grid (layer) are shown. (b) The encoding

array. (d) Storage of the precipitation dataset with the chunked storage structure wh

dimensional array on the disk, but chunks are independent from each other. (e) The c

chunk size.
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management system (DBMS) solution as it could provide an

easy-to-use interface and fine scalability. In practice, organ-

izations can have a range of data types, and a

standardized and generic DBMS solution would be prefer-

able for combining various datasets in different hydrologic

applications, e.g., flood decision support system (Abebe &

Price ), water quality management (Trepanier et al.

), and lake monitoring (Crétaux et al. ). In addition,

DBMS can offer rich functionalities thanks to ad hoc query

support and declarative programming models. Most modern

DBMSs also support automatic parallelization in query

execution. The MD array DBMS is optimized further to
on dataset. (a) The three-dimensional precipitation sample and a time series inside at a

of each grid in a row-majored order. (c) Concatenation of all grids into a one-dimensional

ile the chunk size is 2 (longitude) × 2 (latitude) × 2 (time). Each chunk is also stored as a one-

hunked storage of the precipitation dataset using 2 (longitude) × 4 (latitude) × 1 (time) as the
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support array data management as well. It can specify meta-

data (Pedersen & Jensen ) and support query features

like versioning and overlapping (Colliat ; Brown ).

It employs the chunked storage structure (Figure 1(d) and

1(e)) which divides a whole dataset into separate chunks

with specified chunk sizes (Baumann et al. ; Brown

). Then MD array DBMSs apply specific array addres-

sing and relative offset calculation to index cells, which

achieves high query efficiency (Colliat ).

Previous studies compare relational DBMS MySQL

(without specific MD array support) and MD array DBMS

SciDB on managing big astronomical datasets (Cudre-

Mauroux et al. ). Researchers cooperate with astronom-

ical experts to propose scientific data processing benchmark

and then perform tests. Their final results show that SciDB

performs one or two orders of magnitude faster for most

queries than MySQL. There is also research about the com-

parison between a standard relational DBMS and NetCDF

classic solution on executing four aggregations (sum, aver-

age, minimum, and maximum) and three index queries

(first, middle, and last element) (Cohen et al. ). Results

demonstrate the superiority of NetCDF solution over a rela-

tional DBMS (without MD array support) for large datasets.

However, for publications reviewed until now, no research

has been conducted to investigate the query efficiency of

NetCDF solutions compared to MD array DBMSs for hydro-

logic applications.

Hence, this research is aimed at investigating whether a

MD array DBMS can achieve better performance in proces-

sing queries on large MD hydrologic datasets than classic

non-chunked NetCDF and chunked NetCDF-4 file-based

solutions. NetCDF-4 is a later version introduced to the

NetCDF model, introducing the concept of chunking to

this file format. Based on the prior research (Liu et al.

), enhanced benchmark tests are executed, elaborating

benchmark establishment, MD array DBMS selection, con-

struction of the benchmark test environment, benchmark

execution, and results analysis. Several solutions will be

benchmarked in this research:

• Contiguous data in NetCDF 64-bit offset format without

compression

• Chunked data in NetCDF-4 format without compression

• Chunked data in NetCDF-4 format with compression
om http://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf
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• Chunked data in MD array DBMS without compression

• Chunked data in MD array DBMS with compression.
DATA AND QUERY

In order to assess various solutions for managing MD array

data, it is important to clearly specify representative types of

data and corresponding series of queries. The performance

of different solutions depends on how similar the data are

organized and stored compared to the selection requested.

Devising an optimal solution is a challenge in which a

proper balance has to be found, which can then be evaluated

with the benchmark. Therefore, several experts are first inter-

viewed (Table 1) to better understand the nature of the data

and the queries. These experts are deliberately selected

from different countries and different hydrologic occupations

to increase the comprehensiveness of the benchmark.

To clearly define the various queries, a categorization of

query types is performed. Based on previous related studies

(Cohen et al. ; Su & Agrawal ) and practical experi-

ence, four main query classes are determined (Table 2). In

most cases, users first select the area of interest and a certain

period of time (Class A), i.e., range/box selection according

to spatio-temporal values, retrieving dependent variable

values. Class D is also frequently implemented by hydrolo-

gists. Class B and C are sometimes executed but they are

not the most common types. Therefore, Class A and D get

priority in the benchmark.

Considering all the requirements for datasets, i.e., data

size, dimension, and accessibility, two datasets (Table 3)

have been selected for testing. Dataset MPE (Multi-Sensor

Precipitation Estimate) stores the rainfall rate data pro-

cessed from raw satellite observations. It is a combination

of measurements from a passive microwave imager and

infrared data from EUMETSAT geostationary satellites

(Heinemann et al. ). Hydrologic Research BV can pro-

vide records for more than two years, and the total

amount of data is larger than 4.18 TB (2 years × 365 days ×

24 hours × 250 MB). Dataset GEFS (Global Ensemble Fore-

cast System) is calculated from a global weather forecast

system, i.e., the GFS from the National Centers for Environ-

mental Prediction (NCEP) (Ashrit et al. ). The forecast

dimension refers to the time steps simulated in the model,



Table 1 | Queries and datasets collected by consultancy

Expert Datasets Queries

Dr. Ir. Steele-Dunne (Delft
University of Technology)

Remote sensing data products, such as TRMM, GRACE
and SMOS

Detection of observations, i.e., selecting non-
null variable values

Quality control, selecting values from a
variable grid according to the quality grid

Prof. Wang (Hohai
University)

Observation records collected from spot gauges Accumulating daily variable values to yearly
based values for a dataset

Satellite imageries Averaging extreme value of a variable per year
for a dataset

Data products of remote sensing, such as MODIS NDVI,
and NPP data

Quality control. No-value area should be
below 10% for the whole spatial grid

Ir. Commandeur
(Hydrologic Research
B.V.)

Time series recorded by gauges including precipitation,
discharge, and temperature

Statistical operations, e.g., ‘sum’ and ‘average’

Precipitation data derived from Doppler radars Maximum selection
Radar precipitation data calibrated using records from
gauges. The data contain two spatial dimensions and one
temporal dimension

Sub-selections according to spatial or
temporal dimension from multidimensional
datasets

Processed satellite data such as precipitation and soil
moisture data. They incorporate two spatial dimensions
and one temporal dimension

Subtracting one grid of one dataset from the
other grid of another dataset

Forecast datasets calculated from models, e.g., the Global
Ensemble Forecast System. Data have five dimensions,
longitude, latitude, time, ensemble, and model run

Detecting observations from data captured by
orbiting satellites

Orbiting satellite observations in swathes Calculating the percentile curve for forecast
datasets

Ing. Van der Wielen
(Hydrologic B.V.)

Time series from gauges Sum of time series from gauges
Radar data with two spatial dimensions and one temporal
dimension

Extracting time series from grids

Results computed from hydrologic models. The output has
four dimensions, longitude, latitude, time, and model run
date

Subtraction of accumulated data, e.g.,
precipitation

Forecast data from models Combining data of two grids with different
cell sizes. Intersection and multiplication
are needed

Assigning color to polygons according to
theme values by intersecting polygons with
grids

Data pyramid calculation and query on the
pyramid

Ir. Villa Real (IBM Brazil) Topographic and land cover data Selecting data from one variable grid
according to a NODATA gridPrecipitation rasters calculated from forecast models

Table 2 | Classes of queries collected from consultancy

Query/operation class

A. Selection based on spatial/
temporal extent

B. Selection based on the
variable value

C. Spatial join/combination/
masking operations

D. Mathematical calculation
such as sum, avg
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while model run represents the wall-clock time to run the

model in reality. The 20 ensembles simulate 20 different

initial conditions as the input for the forecast model. This

is done to decrease the uncertainty of the forecast as later

the percentile and ensemble mean are derived.

According to the expert interviews, the most important

query types for the MPE and GEFS datasets have been



Table 3 | Datasets for benchmarking

Dataset MPE GEFS

Variables Rainfall rate Temperature 2 m above ground; Maximum temperature 2 m above
ground; Total precipitation; etc.

Dimension count 3 5

Dimension span x, y, time; (4,000,4,000,4) Longitude, latitude, forecast, ensemble, model run;
(360,181,40,20,1)

Temporal resolution 15 minutes 6 hours

Spatial resolution and coverage 0.03 degree (3.3 km); 1/3 world 1 degree (111 km); global

Single file size 250 MB 1.55 GB

Data format NetCDF 64-bit offset NetCDF 64-bit offset
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selected. In plain English, the queries for benchmarking are

as follows.

MPE:

(Q1) Selection based on spatial dimensions for Delft

(Q2) Selection based on spatial dimensions for north

Netherlands

(Q3) Extraction of time series for a single location in the

Indian Ocean

(Q4) Computation of the monthly average value for the

Netherlands.

GEFS:

(Q1) Selection of total precipitation for all ensembles at

Delft (a single spot) for one forecast step

(Q2) Selection of total precipitation for all ensembles at

Delft for 40 forecast steps

(Q3) Selection of the 80th percentile from all ensembles at

Delft for 40 forecast steps

(Q4) Selection of the mean of 20 ensembles of total precipi-

tation for 40 forecast steps in the Netherlands (a

bounding box).
SELECTION OF MD ARRAY DBMS

In this research, MD array DBMS is defined as a DBMS

of which the abstract model for data management and

query supports operations on MD arrays consisting of

dimensions and attributes. A dimension may represent a

real physical dimension such as latitude, longitude,

height, and time. It can also be used to index other
om http://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf
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quantities, for example, the model run number. Attributes

are the ‘variables’ in NetCDF, representing the infor-

mation of interests like precipitation, rainfall rate, and

evapotranspiration. Traditional relational DBMSs employ

tables as the abstract data model for data management.

Although columns in the table can be regarded as differ-

ent dimensions or attributes, the role or importance of

each column is equal, while in the MD array DBMS,

dimensions are used to organize attribute data and the

focus lies in the attributes. Queries to a MD array

DBMS will never only select dimension values, but

rather use the dimensional values to specify the range of

area/time of interest for which the actual attribute

values are requested.

To determine a suitable MD array DBMS for bench-

marking, popular solutions are compared. These include

Rasdaman (Baumann et al. ), SciDB (Stonebraker

et al. ), MonetDB (Idreos et al. ; Gonçalves et al.

), Essbase (Oracle ), Intersystems Caché (InterSys-

tems ), and Oracle spatial (Oracle ; Xie ).

Among them, Rasdaman and SciDB provide sufficient

documentation for study and research, and the source

code is accessible online, which is crucial for exploring

more details of data structures. To analyze the manage-

ment and the query performance of both solutions

specifically, nine relevant criteria (Table 4) are established

for comparison (Appendix, Table A1, available with the

online version of this paper). The SciDB community sol-

ution provides lossless compression which is a significant

feature for big data processing. Also, SciDB 14.3 has an

active user forum, which can help in understanding



Table 4 | Criteria for comparing rasdaman and SciDB

Criterion Interpretation

License Open source product is preferable because, on the one hand, more details of storage and query
execution can be acquired from source code, and on the other hand, no additional budget is needed
for buying licenses

Implementation of the MD array
storage

Chunked storage structure is employed by most MD array DBMSs. But details for real implementation
such as spatial clustering and indexing can influence the query performance as well, which should be
considered

Compression support Compression is of interest in this research because for hydrologic datasets, usually a large amount of
zero values or null values can exist and it is deduced that compression should thus have a notable
influence on the query efficiency

Parallelization Parallel processing capability is a general technique dealing with big data to improve the query
performance

.Net C# API The HydroNet-4 system which is used for benchmarking is constructed on the .Net platform. To keep
consistency, it is preferable that the DBMS can be accessed through C# APIs

Query language Query language of the DBMS should have a simple yet powerful interface, which provides plenty of
functionalities for communicating with the DBMS

Spatial computing capability The DBMS is expected to be able to perform spatial operations such as intersection, distance
calculation, and projection conversion

NetCDF importer This is needed to load NetCDF files directly into the DBMS. Datasets originally in different formats
can be converted to NetCDF formats inside the HydroNET-4 system

Maintenance The DBMS should provide maintenance to fix bugs, improve and add new features if they are required
by large numbers of users. As well, the consultancy supporting of the DBMS should also be
sufficient, which can benefit this research
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benchmark results. It is a bottom-up designed array DBMS

from the physical storage layer to logical access layer. Also,

it utilizes the chunked storage structure with its native

binary format.
BENCHMARK ENVIRONMENT

The benchmark test environment is constructed on the

HydroNET-4 system (Reichard et al. ), which is run-

ning on Microsoft Windows. However, SciDB (version

14.3) is only available on Linux. Thus, a SciDB connector

has been developed such that the query performance of

both NetCDF and SciDB can be assessed in the same

HydroNET frontend system (Figure 2). The hardware

remains the same.

As is shown in Figure 2, a query starts at a web client

which sends an HTTP POST request with a JSON object

containing essential parameters for executing the query.

The data access API receives the request and parses it.

Then the API communicates with the catalog DBMS to
://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf
retrieve the data from the specific data stores through con-

nectors. After data extraction, the result is returned as a

binary HydroNET in-memory object to HydroNET-4. The

NetCDF connector used to read files in 64-bit offset

format is based on HydroNetCDF library developed and

optimized by the company, and the NetCDF-4 connector

is developed using the standard library NetCDF-4.1.3. The

SciDB connector is constructed on ‘shim’, a basic SciDB

client that exposes limited SciDB functionalities through a

simple HTTP API. All connectors can communicate with

the Processor. For benchmarking, the Processor is utilized

to realize complex queries such as aggregation and percen-

tile calculation for the NetCDF solutions, while SciDB

processes all calculations itself and communicates with the

API directly. The elapsed real time spent for executing a

query, i.e., the benchmark result, can be measured in the

HydroNET-4 frontend. The whole benchmark environment

is installed on a Dell Inc. OptiPlex 745 server in the com-

pany, Hydrologic BV. The server has one Intel processor

with two cores, 6,600 at 2.4 GHz, 4 × 2 GB DDR2 RAM, 3

TB SATA 5,400 rpm Western Digital hard disk. As a large



Figure 2 | Benchmark architecture.
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amount of data are stored locally on internal servers of

Hydrologic BV, it is convenient to transfer data through

the internal network to reduce time cost. Another reason

to adopt an internal server originates from the confidential

aspect. This benchmark set-up is capable of tracing bottle-

necks for big data management and thus indicates optimal

solutions.
RESULTS AND DISCUSSION

Results of the MPE and GEFS data storage and query tests

will be described individually in the following paragraphs.

Data used for benchmarking are stored in NetCDF 64-bit

offset format, NetCDF-4 format, and SciDB separately

with different chunk sizes/dimensions and compression set-

tings (Tables 5 and 6). Regarding benchmark testing, a query
om http://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf
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is executed 20 times alternating among different storage sol-

utions. The final figure for the query response time is the

average of the middle 12 records with the slowest four and

the fastest four records removed for each solution. Bench-

mark performance is provided in Figures 3 and 4.
MPE

Two groups are established to investigate the performance

of the time series extraction: medium size (1 day) and very

large size (30 days). The first test is to extract time series

of various lengths from NetCDF files and SciDB medium-

size arrays (Figure 3). The query results indicate that the

NetCDF-4 solution without compression and SciDB_100

solutions are the fastest. SciDB solutions with large chunk

sizes take more time to execute the query. The negative



Table 5 | MPE storage of NetCDF solutions and SciDB (a solution name with ‘_C’ represents that compression is used)

Solution name Chunk size (longitude × latitude × time) Chunk count Average chunk size Total storage size

NetCDF_64bit_offset_tiny – 500 M

NetCDF4_4000_tiny 4,000 × 4,000 × 1 8 62.5 M 500 M

NetCDF4_4000_C_tiny 4,000 × 4,000 × 1 8 750 K 6 M

SciDB_4000_tiny 4,000 × 4,000 × 1 8 5 M 40.1 M

SciDB_4000_C_tiny 4,000 × 4,000 × 1 8 1.4 M 11.1 M

SciDB_800_tiny 800 × 800 × 1 200 0.2 M 40.2 M

SciDB_800_C_tiny 800 × 800 × 1 200 56.6 K 11.3 M

SciDB_100_tiny 100 × 100 × 1 12,800 3.3 K 42.3 M

SciDB_100_C_tiny 100 × 100 × 1 12,800 1 K 12.8 M

NetCDF_64bit_offset_small – 1.46 G

NetCDF4_4000_small 4,000 × 4,000 × 1 24 60.8 M 1.46 G

NetCDF4_4000_C_small 4,000 × 4,000 × 1 24 750 K 18 M

SciDB_4000_small 4,000 × 4,000 × 1 24 4.8 M 115.9 M

SciDB_4000_C_small 4,000 × 4,000 × 1 24 1.3 M 32.1 M

SciDB_800_small 800 × 800 × 1 600 0.2 M 116.4 M

SciDB_800_C_small 800 × 800 × 1 600 55 K 32.8 M

SciDB_100_small 100 × 100 × 1 38,400 3.2 K 122.2 M

SciDB_100_C_small 100 × 100 × 1 38,400 1 K 37.1 M

NetCDF_64bit_offset_medium – 5.86 G

NetCDF4_4000_medium 4,000 × 4,000 × 1 96 61 M 5.86 G

NetCDF4_4000_C_medium 4,000 × 4,000 × 1 96 750 K 72 M

SciDB_4000_medium 4,000 × 4,000 × 1 96 5.1 M 489 M

SciDB_4000_C_medium 4,000 × 4,000 × 1 96 1.4 M 136.2 M

SciDB_800_medium 800 × 800 × 1 2,400 200 K 491 M

SciDB_800_C_medium 800 × 800 × 1 2,400 58 K 139 M

SciDB_100_medium 100 × 100 × 1 153,600 3.4 K 514.7 M

SciDB_100_C_medium 100 × 100 × 1 153,600 1 K 157.3 M

NetCDF_64bit_offset_large – 41 G

NetCDF4_4000_large 4,000 × 4,000 × 1 672 61 M 41 G

NetCDF4_4000_C_large 4,000 × 4,000 × 1 672 750 K 504 M

SciDB_800_large 800 × 800 × 1 16,800 180 K 2.98 G

SciDB_800_C_large 800 × 800 × 1 16,800 51 K 864 M

NetCDF_64bit_offset_vlarge – 176 G

NetCDF4_4000_vlarge 4,000 × 4,000 × 1 2,880 61.1 M 176 G

NetCDF4_4000_C_vlarge 4,000 × 4,000 × 1 2,880 730 K 2.1 G

SciDB_800_vlarge 800 × 800 × 1 72,000 200 K 13.7 G

SciDB_800_C_vlarge 800 × 800 × 1 72,000 58 K 3.88 G
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effect of compression on SciDB arrays with chunk size

4,000 × 4,000 × 1 is significant. However, when the chunk

size is small, compression does not have a negative
://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf
impact. The DEFLATE compression of NetCDF-4 causes

severe degradation of the query performance. As the

amount of data increase, the average time to extract a time



Table 6 | GEFS storage of NetCDF solutions and SciDB

Array name Dimension order Chunk size Chunk count
Average chunk
storage size

Total storage
size

NetCDF_64bit_offset – – – – 1.55 G

NetCDF4_S3 X, Y, Forecast,
Ensemble, Modelrun

360 × 181 × 1 × 20 × 1 40 40 M 1.55 G

NetCDF4_S3_C X, Y, Forecast,
Ensemble, Modelrun

360 × 181 × 1 × 20 × 1 40 16.4 M 654 M

NetCDF4_S5 X, Y, Forecast,
Ensemble, Modelrun

360 × 181 × 1 × 1 × 1 800 2 MB 1.55 G

NetCDF4_S5_C X, Y, Forecast,
Ensemble, Modelrun

360 × 181 × 1 × 1 × 1 800 700 K 561 M

SciDB_S1 Modelrun, Ensemble,
Forecast, Y, X

1 × 20 × 1 × 181 × 360 40 6.7 M 268 M

SciDB_S1_C Modelrun, Ensemble,
Forecast, Y, X

1 × 20 × 1 × 181 × 360 40 2.2 M 86.4 M

SciDB_S2 Modelrun, Forecast, Y,
X, Ensemble

1 × 1 × 181 × 360 × 20 40 6.2 M 247 M

SciDB_S2_C Modelrun, Forecast, Y,
X, Ensemble

1 × 1 × 181 × 360 × 20 40 2 M 79 M

SciDB_S3 X, Y, Forecast,
Ensemble, Modelrun

360 × 181 × 1 × 20 × 1 40 6.2 M 246.5 M

SciDB_S4 Ensemble, X, Y,
Forecast, Modelrun

20 × 360 × 181 × 1 × 1 40 5.8 M 232.4 M

SciDB_LS1 Modelrun, Ensemble,
Forecast, Y, X

1 × 20 × 40 × 181 × 360 1 268 M 268 M

SciDB_LS2 Modelrun, Forecast, Y,
X, Ensemble

1 × 40 × 181 × 360 × 20 1 246.7 M 246.7 M

SciDB_LS3 X, Y, Forecast,
Ensemble, Modelrun

360 × 181 × 40 × 20 × 1 1 246.5 M 246.5 M

SciDB_LS4 Ensemble, X, Y,
Forecast, Modelrun

20 × 360 × 181 × 40 × 1 1 250 M 250 M
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series of one time step reduces for NetCDF-4, SciDB_800,

and SciDB_100 solutions. The scalability of the other sol-

utions remains constant.

The second test compares the 64-bit offset,

NetCDF4_4000, SciDB_800, and SciDB_800_C solution

for extracting time series of 30 consecutive days of data.

The uncompressed NetCDF-4 solution holds the leading

position, while the 64-bit offset solution is nearly ten times

slower than the NetCDF-4 solution. Further, the NetCDF-4

solution presents the pattern that the average time to extract

the time series of a time step decreases when more data are

requested. From raw test records, it is found that NetCDF-4’s

favorable scalability is due to the caching mechanism of the

Windows operating system: after the first query execution,
om http://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf

4

response time decreases dramatically to a certain threshold.

The DEFLATE compression which is the default com-

pression method on SciDB array does not have significant

effect on the query performance. For SciDB solutions, an

odd pattern arises that the average time to extract a time

series of a time step reaches its minimum in the 96-step

case (i.e., the time consumed to extract the time series

divided by 96), while it rises again afterwards. The reason

is that during the whole process of executing the query 20

times, relevant data are cached into the memory gradually

instead of immediate caching after executing the same

query two or three times.

Apart from the time series extraction, the results of the

sub grid selection show that, in general, NetCDF-4 solution



Figure 3 | The performance on retrieving MPE time series of different lengths, i.e., 8, 24, and 96 steps from a single location in the Indian Ocean at the medium-size level.

Figure 4 | The performance of calculating the ensemble mean of GEFS total precipitation in the Netherlands and Europe.
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without compression is faster than the other solutions. The

NetCDF 64-bit offset solution ranks the second, followed

by other SciDB solutions. However, the gap is not signifi-

cant for the SciDB solutions with small chunk sizes
://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf
including 800 × 800 × 1 and 100 × 100 × 1. When the

DEFLATE compression is applied to the NetCDF-4 stor-

age, the query performance drops drastically and it takes

around 40 times longer to extract the sub-grid than
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extraction from uncompressed NetCDF-4 files. SciDB orig-

inally builds an index on Run Length Encoding (RLE) data.

The DEFLATE compression, i.e., a secondary compression,

does not cause much delay. All solutions scale well and

performance remains at a constant level as the data size

gets larger.

With respect to the average calculation, the 64-bit offset,

NetCDF4_4000, SciDB_800, and SciDB_800_C solution are

compared. NetCDF-4 solution without compression still

leads the ranking. The performance of the different SciDB

solutions does not vary much. The combination of the oper-

ator ‘aggregate’ and ‘between’ for the average calculation

inside SciDB results in much more overhead than the case

where only the ‘between’ operation is utilized for sub-selec-

tion. Inefficient processing ability with combined operators

is a problem indicated by SciDB developers. A noticeable

point for the NetCDF-4 solution is that when the average

is calculated for 2,880 time steps, the average query

response time suddenly increases dramatically. Raw

measurements show that the gaps among all 20 measure-

ments are fairly small. This indicates that the Windows

operating system cached little relevant data. The reason is

that after one query execution of the NetCDF-4 solution,

another process requesting the 64-bit offset data follows.

Hence, the query executed for the 64-bit offset solution

flushes NetCDF-4 data cached. Average calculation with

fewer time steps results in smaller output sizes, which is

probably the reason why the cache flushing does not

occur, as data still fit in the memory.
GEFS

In Table 6, the last dimension in the second column is the

outermost dimension, which is the most significant in orga-

nizing the storage. S1, S2, S3, and S4 represent four data

schemes, by sorting cells according to different order of

dimensions. For instance, in a chunk of the SciDB_S3,

data stored first are 360 cells of all X values where the Y

and Ensemble value both equal 1. What are stored next

are another 360 cells with Y equal to 2 while Ensemble

remains unchanged. The chunk sizes of these four arrays

keep at the same modest level, i.e., 1 value in the model

run and the forecast dimension, 20 values in the ensemble
om http://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf
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dimension, 181 values in the Y dimension, and 360 values

in the X dimension. In the S5 scheme, a chunk only contains

a spatial grid, which is a decision from recommendations of

Lee et al. ().

It is commonly accepted that retrieving data which are

stored adjacently on the disk should be faster than data

stored discontinuously. Thus, considering the dimension

order, the SciDB_S1 should take less time to execute Q1

than the SciDB_S2, while the SciDB_S4 should respond

faster than the SciDB_S3. In addition, the SciDB_S1 and

the SciDB_S4 should both respond more quickly than

either the SciDB_S2 or the SciDB_S3. This is verified

through the benchmark tests. To exclude the effect of

chunk size on the performance, GEFS dataset is restruc-

tured into another four arrays with large chunk size, i.e.,

LS1, LS2, LS3, and LS4. In these cases, the impact of dimen-

sion order on the query performance becomes more

significant. However, an exception occurs in that the

SciDB_LS2, in which ensemble values in a single location

at one forecast step are stored discontinuously, responds

faster than the SciDB_LS4 where ensemble values are

stored successively.

Regarding Q4 Selection of the mean of 20 ensembles of

total precipitation for 40 forecast steps in the Netherlands

(a bounding box), to investigate the scalability of different

solutions, two regions are selected (Figure 4). One is the

Netherlands containing 20 cells (5 × 4) and the other is

the whole of Europe covering 3,888 cells (72 × 54). For

the two cases, the pattern of performance is analogous to

results of Q2 and Q3. Thanks to caching, compression of

the NetCDF4_S5 causes less negative impact on the

query performance compared with SciDB solutions.

NetCDF-4 solutions with larger chunk size, i.e., S3, do

not benefit from caching which is undermined by query

execution on other data stores. In general, the NetCDF4

_S5 and NetCDF4_S5_C present the best scalability. As

the query area increases 200%, the query response time

only grows 20–30%. The query processing time of the 64-

bit offset solution experiences a 54% increase. With little

caching, NetCDF-4 S3 data stores cost twice the time on

the European scale compared to the Netherlands scale.

The inefficient combination of ‘aggregate’ and ‘between’

operator for the ensemble mean calculation still confines

the scalability of SciDB solutions.
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CONCLUSIONS

Through the establishment of benchmark sets, construction

of benchmark environment and tests, the research indicates

that the solution of chunked NetCDF-4 without com-

pression and the 64-bit offset solution outperform SciDB

solutions for spatial selections and aggregations. The

NetCDF-4 solution shows significant superiority for tem-

poral selections as well. The setting of dimensions inside a

chunk effectively gives the users control over how to cluster

the MD spatio-temporal data. Depending on the data, the

compression is typically in the range between a factor 3

(GFES data) up to nearly a factor 100 (MPE data). Although

applications are confined in the realm of hydrology, the

knowledge acquired can be applied to all MD array data

management from the following aspects:

1. The chunk size plays an important role in the query per-

formance and small chunk sizes are preferable for

solutions adopting chunked storage. However, as is indi-

cated in the research, indexing large quantities of small

chunks could cause overload of the main memory.

2. The compression techniques, such as RLE and DEFLAT,

can dramatically reduce the data storage. However,

unless an indexing approach is developed to locate

specific cells, compressed data may not be directly used

for efficient querying.

3. The caching at the operating system or the database level

can be complex during query execution. Cached data of

one query may be flushed by another query executed

which returns a large volume of data. Also, for some sol-

utions, caching is too slow to present its advantages,

which is also related to query types.

4. Changing the order of dimensions inside each chunk can

have an influence on the query performance. However,

when chunk size reduces to a modest level, the impact

of dimension order decreases as well. It thus highlights

the importance of an optimal chunk size and a smart

indexing strategy from another perspective.

From this research, geo-data suppliers could start distri-

buting various data products using state-of-the-art formats

including NetCDF-4 and HDF-5. Both share the same

chunked storage model (Pourmal ). Other formats like

GRIB and GRD are conventionally efficient for storage,
://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf
but they bring much additional processing work for end

users. Another option for data publishers would be storage

and processing services through either an integrated or dis-

tributed MD array DBMS which provides advantageous

integration with different data types, smart caching strat-

egies, transaction support, and out-of-the-box support for

parallelization. While unifying data models and formats

might still be a long-term goal for which to strive, practical

suggestions on managing MD data for geo-related commu-

nities are listed below:

1. Before importing all data into specific DBMSs, modelers

may first spend some time on improving available file-

based solutions and try to update from contiguous

storage to a chunked storage approach. Slow data

loading is a common problem and thus a bottleneck

for database solutions, so this should receive attention

by the developers.

2. For a given storage solution, it is recommended to opti-

mize the chunk size for the most important queries. If a

sufficiently fast solution for all queries cannot be found,

a multiple representation solution can be considered. In

the research, MPE chunks tested are of a 2D shape,

that is, chunk size on the temporal dimension is equal

to 1. In fact, cubic chunks can be another choice. More

benchmark tests should be performed after modifying

the initial chunk size to achieve the best performance.

3. An advanced platform is a general way to improve the

efficiency of data management. For example, paralleliza-

tion can facilitate big data loading, updating and query

processing, especially with recently developed Hadoop/

Spark platforms. As a file-based solution normally

needs extra development for parallelization, DBMSs

with native realization of functions, prior assessment of

time and financial cost should be utilized.
ACKNOWLEDGEMENTS

The authors would like to acknowledge the funding support

from China National Key Research and Development

Program (Grant No. 2017YFC0405801-02) and thank

Hydrologic BV for the financial and technical support

during this research.



1070 H. Liu et al. | Approaches to manage large multidimensional hydrologic datasets Journal of Hydroinformatics | 20.5 | 2018

Downloaded fr
by guest
on 25 April 202
REFERENCES
Abebe, A. J. & Price, R. K.  Decision support system for urban
flood management. Journal of Hydroinformatics 7 (1), 3–15.

Ashrit, R., Iyengar, G. R., Sankar, S., Ashish, A., Dube, A., Dutta,
S. K., Prasad, V. S., Rajagopal, E. N. & Basu, S. 
Performance of Global Ensemble Forecast System (GEFS)
During Monsoon 2012. NCMRWF Research report, NMRF/
RR/1. http://www.ncmrwf.gov.in/GEFS_Report_Final.pdf
(accessed 14 December 2017).

Baumann, P., Dehmel, A., Furtado, P., Ritsch, R. & Widmann, N.
 The multidimensional database system RasDaMan. In:
Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, Seattle, Washington,
USA, pp. 575–577.

Brown, P. G.  Overview of SciDB: large scale array
storage, processing and analysis. In: Proceedings of the 2010
International ACM SIGMOD Conference on Management of
Data, Indianapolis, Indiana, USA, pp. 963–968.

Cohen, S., Hurley, P., Schulz, K. W., Barth, W. L. & Benton, B.
 Scientific formats for object-relational database systems:
a study of suitability and performance. ACM SIGMOD
Record 35 (2), 10–15.

Colliat, G.  OLAP, relational, and multidimensional database
systems. ACM SIGMOD Record 25 (3), 64–69.

Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V.,
Bergé-Nguyen, M., Gennero, M. C., Nino, F., Abarco Del Rio,
R., Cazenave, A. & Maisongrande, P.  SOLS: A lake
database to monitor in the Near Real Time water level and
storage variations from remote sensing data. Advances in
Space Research 47 (9), 1497–1507.

Cudre-Mauroux, P., Kimura, H., Lim, K. T., Rogers, J., Madden, S.,
Stonebraker, M., Zdonik, S. B. & Brown, P.  SS-DB: A
standard science DBMS benchmark. http://www-conf.slac.
stanford.edu/xldb10/docs/ssdb_benchmark.pdf (accessed 14
December 2017).

Gonçalves, R., Zlatanova, S., Kyzirakos, K., Nourian, P., Alvanaki,
F. & van Hage, W.  A columnar architecture for modern
risk management system. In: Proceedings of the IEEE 12th
International Conference on E-Science, Baltimore, Maryland,
USA, pp. 424–429.

Heinemann, T., Latanzio, A.&Roveda, F. TheEumetsatmulti-
sensor precipitation estimate (MPE). In: Second International
Precipitation Working Group (IPWG) Meeting, Madrid,
Spain, pp. 23–27.

Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, K. S. &
Kersten, M. MonetDB: two decades of research in column-
oriented database architectures. Bulletin of the IEEE Computer
Society TechnicalCommittee onDataEngineering 35 (1), 40–45.
om http://iwaponline.com/jh/article-pdf/20/5/1058/656579/jh0201058.pdf

4

InterSystems.  Using Caché Globals. http://docs.intersystems.
com/documentation/cache/20172/pdfs/GGBL.pdf
(accessed 14 December 2017).

Lee, C., Yang, M. & Aydt, R.  NetCDF-4 Performance Report,
Technical report, HDF group. https://support.hdfgroup.org/
pubs/papers/2008-06_netcdf4_perf_report.pdf (accessed 14
December 2017).

Liu, H., van Oosterom, P., Hu, C. & Wang, W.  Managing
large multidimensional array hydrologic datasets: a case
study comparing NetCDF and SciDB. Procedia Engineering
154, 207–214.

Oracle  Oracle Essbase Database Administrator’s Guide.
http://docs.oracle.com/cd/E12825_01/epm.111/esb_dbag/
frameset.htm?dinconc.htm (accessed 14 December 2017).

Oracle  Spatial and Graph GeoRaster Developer’s Guide.
http://docs.oracle.com/database/121/GEORS/toc.htm
(accessed 14 December 2017).

Pedersen, T. B. & Jensen, C. S.  Multidimensional database
technology. Computer 34 (12), 40–46.

Pourmal, E.  What NetCDF Users Should Know About
HDF5? https://www.unidata.ucar.edu/software/netcdf/
workshops/2007/hdf5/ncw07-hdf5.pdf (accessed 14
December 2017).

Reichard, L., Lobbrecht, A., Clark, S., Catalano, C., Tate, B. &
Cox, D.  Supporting water managers making effective
decisions by using HydroNET. In: Proceedings of the 35th
Hydrology andWater Resources Symposium, Perth, Australia,
pp. 710–717.

Rew, R., Hartnett, E. & Caron, J.  NetCDF-4: Software
implementing an enhanced data model for the geosciences.
In: Proceedings of the 22nd AMS Conference on Interactive
Information and Processing Systems for Meteorology, Atlanta,
Georgia, USA. AMS Press, pp. 6.6.

Stonebraker, M., Brown, P., Poliakov, A. & Raman, S.  The
architecture of SciDB. In: Proceedings of the 23rd
International Conference on Scientific and Statistical
Database Management, Portland, Oregon, USA, pp. 1–16.

Su, Y. & Agrawal, G.  Supporting user-defined subsetting
and aggregation over parallel netcdf datasets. In:
Proceedings of the International Symposium on Cluster,
Cloud and Grid Computing, Ottawa, Canada. IEEE Press,
pp. 212–219.

Trepanier, M., Gauthier, V., Besner, M. C. & Prevost, M. 
A GIS-based tool for distribution system data integration and
analysis. Journal of Hydroinformatics 8 (1), 13–24.

Xie, Q. J.  The design of a high performance earth imagery and
raster data management and processing platform. In:
International Archives of the Photogrammetry, Remote
Sensing & Spatial Information Sciences, Prague,
Czech Republic, pp. 551–555.
First received 16 October 2017; accepted in revised form 17 April 2018. Available online 10 May 2018

http://www.ncmrwf.gov.in/GEFS_Report_Final.pdf
http://www.ncmrwf.gov.in/GEFS_Report_Final.pdf
http://dx.doi.org/10.1145/1147376.1147378
http://dx.doi.org/10.1145/1147376.1147378
http://dx.doi.org/10.1145/234889.234901
http://dx.doi.org/10.1145/234889.234901
http://dx.doi.org/10.1016/j.asr.2011.01.004
http://dx.doi.org/10.1016/j.asr.2011.01.004
http://dx.doi.org/10.1016/j.asr.2011.01.004
http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf
http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf
http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf
http://docs.intersystems.com/documentation/cache/20172/pdfs/GGBL.pdf
http://docs.intersystems.com/documentation/cache/20172/pdfs/GGBL.pdf
http://docs.intersystems.com/documentation/cache/20172/pdfs/GGBL.pdf
https://support.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf
https://support.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf
https://support.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf
http://dx.doi.org/10.1016/j.proeng.2016.07.449
http://dx.doi.org/10.1016/j.proeng.2016.07.449
http://dx.doi.org/10.1016/j.proeng.2016.07.449
http://docs.oracle.com/cd/E12825_01/epm.111/esb_dbag/frameset.htm?dinconc.htm
http://docs.oracle.com/cd/E12825_01/epm.111/esb_dbag/frameset.htm?dinconc.htm
http://docs.oracle.com/cd/E12825_01/epm.111/esb_dbag/frameset.htm?dinconc.htm
http://docs.oracle.com/database/121/GEORS/toc.htm
http://docs.oracle.com/database/121/GEORS/toc.htm
http://dx.doi.org/10.1109/2.970558
http://dx.doi.org/10.1109/2.970558
https://www.unidata.ucar.edu/software/netcdf/workshops/2007/hdf5/ncw07-hdf5.pdf
https://www.unidata.ucar.edu/software/netcdf/workshops/2007/hdf5/ncw07-hdf5.pdf
https://www.unidata.ucar.edu/software/netcdf/workshops/2007/hdf5/ncw07-hdf5.pdf
http://dx.doi.org/10.2166/jh.2006.004
http://dx.doi.org/10.2166/jh.2006.004

	Managing large multidimensional hydrologic datasets: A case study comparing NetCDF and SciDB
	INTRODUCTION
	DATA AND QUERY
	SELECTION OF MD ARRAY DBMS
	BENCHMARK ENVIRONMENT
	RESULTS AND DISCUSSION
	MPE
	GEFS
	CONCLUSIONS
	The authors would like to acknowledge the funding support from China National Key Research and Development Program (Grant No. 2017YFC0405801-02) and thank Hydrologic BV for the financial and technical support during this research.
	REFERENCES


