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Multi-source data fusion method for structural safety

assessment of water diversion structures

Sherong Zhang, Ting Liu and Chao Wang
ABSTRACT
Building safety assessment based on single sensor data has the problems of low reliability and high

uncertainty. Therefore, this paper proposes a novel multi-source sensor data fusion method based

on Improved Dempster–Shafer (D-S) evidence theory and Back Propagation Neural Network (BPNN).

Before data fusion, the improved self-support function is adopted to preprocess the original data. The

process of data fusion is divided into three steps: Firstly, the feature of the same kind of sensor data

is extracted by the adaptive weighted average method as the input source of BPNN. Then, BPNN is

trained and its output is used as the basic probability assignment (BPA) of D-S evidence theory.

Finally, Bhattacharyya Distance (BD) is introduced to improve D-S evidence theory from two aspects

of evidence distance and conflict factors, and multi-source data fusion is realized by D-S synthesis

rules. In practical application, a three-level information fusion framework of the data level, the

feature level, and the decision level is proposed, and the safety status of buildings is evaluated by

using multi-source sensor data. The results show that compared with the fusion result of the

traditional D-S evidence theory, the algorithm improves the accuracy of the overall safety state

assessment of the building and reduces the MSE from 0.18 to 0.01%.

Key words | BP neural network, D-S evidence theory, multi-source data fusion, safety evaluation,

structural safety, water diversion project
HIGHLIGHTS

• A new method is proposed to evaluate the safety status of water diversion structures by fusing

multi-source heterogeneous sensor data.

• A multi-sensor hierarchical data fusion model suitable for the structural characteristics of the

water diversion project is established.

• The classical D-S evidence theory is improved and combined with BPNN to reduce the

uncertainty of sensor data.
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GRAPHICAL ABSTRACT
INTRODUCTION
Inter-basin water diversion project is an effective measure to

control the uneven distribution of water resources and solve

the contradiction between supply and demand for water

resources (Valipour , ; Bazrkar et al. ). Accord-

ing to statistics, more than 350 water diversion projects

have been built in more than 40 countries around the

world (Jia ), which has made great contributions

to the economy, public security, and ecological benefits.

There are many types of water diversion structures, and

many safety risk factors are inevitably exposed during oper-

ations (Mehta et al. ). Especially in the case of aging,

such as building settlements, cracks, and leakage (Samadi

et al. ; Mehta & Yadav ). The various structures

in the water diversion project belong to the series structure,

and the impact of any link problem is far-reaching and huge.

Therefore, how to reasonably evaluate the overall safety of

water diversion structures and discover abnormalities in

time is particularly important.

The long-term real-time monitoring of water diversion pro-

ject using sensors is an important means to ensure the safe

operation of buildings. Although the data acquisition and

analysis platform for main structures of water diversion project

has been established at this stage, which can monitor the

safety status of buildings in real-time (Jiang et al. ; Xiao

et al. ). However, there are still some limitations in the

overall safety evaluation of buildings. First of all, the analysis

of the monitoring data of the diversion building is mainly to

establish a single measuring point mathematical model to

determine the local structural state of the diversion building,

but there are obvious limitations in reflecting the overall struc-

tural state of the building. Second, due to the existence of
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various noises and abnormal values in the monitoring data,

it is usually necessary to rely on expert experience for identifi-

cation and processing, which greatly reduces the efficiency of

analysis. Third, in actual situations, the occurrence of safety

accidents in water diversion projects is often the result of the

joint action of various types of monitoring indicators (such

as stress, strain, displacement, and seepage pressure). The cur-

rent analysis method does not consider the relationship

between the data, so it is difficult to obtain accurate infor-

mation reflecting the overall safety status of the building.

Aiming at the problem of multi-source data security

evaluation of hydropower projects, scholars have proposed

the dam safety performance fusion evaluation model and

carried out typical engineering applications. Su et al. ()

combined the Dempster–Shafer (D-S) evidence theory with

a set pair theory, integrated multi-source spatiotemporal

information of dam safety, and identified and evaluated

the structural behavior of dams. Jiang & He () proposed

a multi-point fusion evaluation method for the overall dam

service status based on the joint distribution function. Liu

et al. () proposed a comprehensive analysis method of

high dam prototype monitoring data based on multi-source

information fusion. This method can effectively process a

large amount of monitoring data from multiple monitoring

points, and output the comprehensive evaluation results of

dams at multiple points in real-time. However, there are

few studies on the application of information fusion theory

in the safety evaluation of diversion structures.

To address the above problems, this study uses infor-

mation fusion technology to fuse multi-source heterogeneous

sensor data and reveals the internal relationship between the
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overall performance and local characteristics of water diver-

sion structures. According to the characteristics of water

diversion structures and based on the hierarchical theory of

data fusion, a multi-sensor hierarchical data fusion model is

proposed. Through the establishment of the data-level, fea-

ture-level and decision-level data fusion models, the safety

status of the water diversion project is evaluated.

There are three innovations in this study. First, a new

method is proposed to evaluate the safety status of water

diversion structures by fusing multi-source heterogeneous

sensor data. Second, a three-layer data fusion evaluation

model is established according to the structural character-

istics of diversion structures, including data-level fusion,

feature-level fusion, and decision-level fusion. Third, the

classical D-S evidence theory is improved and combined

with Back Propagation Neural Network (BPNN) to reduce

the uncertainty of sensor data and improve the accuracy

and efficiency of safety evaluation. Besides, the evaluation

model can also be extended to the pipeline, bridge, and

other similar long-line structure buildings, and the novel

method can be extended to other engineering fields for

fusion diagnosis. In practical application, safety inspection is

also an important means to ensure the operation of the project.

A large amount of unstructured text data will be generated

during the inspection process of the water diversion project.

This part of the data has not been considered in this study.
LITERATURE REVIEW

Data fusion technology

Data fusion technology refers to the comprehensive processing

of data from different information sources through various

effective methods to obtain accurate and reliable reasoning

decisions. Data fusion technology has been widely used in var-

ious disciplines, including but not limited to structural health

monitoring (Liu et al. ; Wu & Jahanshahi ; Zhu

et al. ), environmental monitoring (Long et al. ;

Yang et al. ), mechanical fault diagnosis (Azamfar et al.

; Huang et al. ; Zhang & Deng ), and aerospace

(Osegueda et al. ; Brierley et al. ).

Generally speaking, data fusion can achieve different

fusion levels according to different fusion objectives
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
(Castanedo ). Data fusion is usually divided into three

levels: data level, feature level, and decision level. The

data level is used for the integration of similar sensor data,

the feature level is used for the integration of heterogeneous

sensor data, and the decision level l obtains the final evalu-

ation result through multi-source data fusion. Existing data

fusion algorithms can be divided into three categories: stat-

istical methods include weighted average, Kalman filter,

Bayesian estimation, D-S evidence theory, etc.; information

theory methods include support function, cluster analysis,

and entropy theory; artificial intelligence methods including

artificial neural network, fuzzy set theory, and expert

system. The choice of different fusion methods is the main

problem of building safety evaluation using data fusion tech-

nology. How to choose the optimal fusion method for each

safety assessment task is a challenging problem. For this

reason, this paper designs a set of safety evaluation system

and multi-source data fusion method suitable for water

transfer project.

D-S evidence theory and BPNN

D-S evidence theory, as a classic data fusion algorithm with

the ability to deal with uncertain information, has strong

engineering practicability (Yue et al. ; Zhao et al.

). However, in the application of classical D-S evidence

theory, the basic probability assignment (BPA) of the key

parameter is often obtained through empirical formulas or

statistical methods, which are subjective and leads to low

credibility of the results (Guan et al. ). Therefore, this

paper adopts BPNN to obtain BPA. BPNN has strong non-

linear mapping ability, good fault tolerance, and robustness

and is widely used in the fusion of multi-source hetero-

geneous data (Zhang et al. ; Wang ). This paper

trains the characteristic data collected by various sensors

in the water diversion structure to obtain the BPA value.

To improve the dynamic applicability in the process of

data fusion and eliminate the interference of effective abnor-

mal monitoring data, the adaptive weighted average

algorithm is introduced to calculate the input data of

BPNN. Previous studies have shown that the adaptive

weighted average method (AWAM) is superior to the tra-

ditional weighted average method in improving the fusion

accuracy (Bin et al. ; Ren et al. ).
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The classical D-S evidence theory may produce unrea-

sonable results when synthesizing high conflict evidence.

To solve this problem, scholars have proposed various sol-

utions (Deng et al. ; Deng & Wang ). Murphy

() proposed to perform arithmetic averaging on the

initial evidence set, and then combine it with D-S evidence

theory. This method can effectively fuse high conflict evi-

dence but ignores the correlation between the evidence.

The Bhattacharya distance (BD) is a random measurement

that considers the probability distribution between two

samples (Bi et al. ). This paper introduces BD to

measure the distance between different evidences output

by BPNN to resolve conflicts between evidences and

improve the reliability of evaluation results. In complex situ-

ations, existing studies have shown that hybrid data fusion

methods are often superior to single fusion methods (Xie

& Guan ; Gong ; Wu et al. ).

Therefore, this paper proposes a hybrid data fusion algor-

ithm based on Improved D-S theory and BPNN for multi-

sensor data fusion of water diversion projects. First, the

AWAM is used to extract the characteristic values of the

same type of monitoring data from multiple measurement
Figure 1 | Research framework.
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points, and the results are used as the input data of BPNN.

Then, the output data trained by BPNN is used as the BPA

of improved D-S. Finally, the improved D-S theory is applied

to the overall safety evaluation of the building.
METHODOLOGY

Research framework

As shown in Figure 1, the research framework of this paper

includes three major parts: data collection and evaluation

index acquisition, the process of safety evaluation, and addres-

sing a case study. First, the sensor data of reinforcement gauge,

joint meter, osmometer, and earth pressure gauge are col-

lected. According to the type of sensor data, the evaluation

index of the building is determined, namely stress, displace-

ment, seepage pressure, and earth pressure. Second,

combining the Improved D-S method with BPNN, a novel

method of building structure safety evaluation based on

multi-source data fusion technology is proposed. Before that,

the improved support function is introduced to preprocess
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the original data. Use AWAM to extract the feature values of

preprocessed data as the input data of BPNN. Finally, the

method is applied to the structural safety evaluation of an

inverted siphon building in the Henan section of the middle

route of the south to north water diversion project, and the

evaluation results were analyzed.

Data preprocessing

Improved algorithm of support function with self-support

Due to the uncertainty of the environment and sensor fail-

ure, the collected data may be invalid or abnormal. The

fusion results with invalid abnormal data cannot reflect

the real safety status of buildings, so it is necessary to prepro-

cess the invalid abnormal data. The data preprocessing

method based on support function can identify abnormal

data with large errors and improve the accuracy and

reliability of data fusion (Yager ). Considering that the

sensor collects data many times during the operation of

the building, the reliability of the data can be evaluated by

measuring the data consistency at each point in the collec-

tion interval. Therefore, this paper introduces a self-

support degree function to improve the algorithm. The

improved algorithm considers the credibility of different

sensor data at the same time and the credibility of the data

collected from the same measuring point in the entire obser-

vation interval. The improved algorithm is used to

preprocess the original data, which can improve the accu-

racy of subsequent fusion evaluation.

Unknown factors such as geographical location and

environmental conditions of water diversion projects will

affect the collection of monitoring data, making the monitor-

ing data mixed with uncertain or even wrong information.

To improve the accuracy of subsequent building safety assess-

ment, it is necessary to find the relationship between different

data to determine the reliability of the data. The exponential

decay support function has good reliability and high precision

in data fusion. The support degree of calculation avoids the

absoluteness of non-zero or non-one. Therefore, this paper

introduces and improves the exponential decay support func-

tion to judge the validity of the data. Assuming that the data

of the measuring points i, j at time t are ai(t) and aj(t), i, j¼
1, 2, 3,…, m. The calculation equation of the exponential
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
decay support function is as follows (Shi et al. ):

dij ¼ exp (�β × (ai(t)� aj(t))
2) (1)

where the parameter β is the support attenuation factor, which

is usually artificially set to 1. For a given jai(t)� aj(t)j, the
attenuation amplitude of support is changed by adjusting the

size of β.

Considering the reliability of the data collected from the

same measuring point for many times. To reduce the subjec-

tive error caused by setting the value of parameter β

artificially. In this study, the close degree of the data collected

by the measuring point i in this part is named self-support

degree di(t). The square root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di(t)dj(t)

p
of the self-support

degree of the measuring point i, j is taken as the attenuation

factor of the support degree. Then, the calculation equation

of self-support is shown in Equation (2) and the improved

support function is shown in Equation (3).

di(t) ¼ 1
1þ jai(t)� �aij (2)

where �ai represents the average value of k data collected by

measuring point i.

dij(t) ¼ exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di(t)dj(t)

q
× (ai(t)� aj(t))

2
� �

(3)

The improved support function dij(k) depends not only

on the support degree of different measuring points at the

same time but also depends on the self-support degree of

measurement points. In this way, the influence of the moni-

toring data with large errors caused by the instrument itself

and the environment on the fusion value is reduced, and the

validity of the data to be fused is improved.
Identify abnormal data

To identify abnormal data, the support degree of each moni-

toring data is calculated by improved support function, and
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the support matrix is constructed as follows:

Z ¼
d11(t) d12(t) � � � d1m(t)
d21(t) d22(t) � � � d2m(t)
� � � � � � � � � � � �

dm1(t) dm2(t) � � � dmm(t)

2
664

3
775 (4)
At time t, the consistency measurement γi(t) of support

degree between the data of measuring point i and the data

of other measuring points are shown as follows:

γi(t) ¼

Pm
j¼1,j≠i

dij(t)

m� 1
(5)

where, 0< γi(t) � 1, the larger the value of γi(t) is, the closer

the monitoring data of measuring point i to the monitoring

data of other measuring points at time t. On the contrary,

the monitoring data is likely to be abnormal data and

should be eliminated. Based on this, the monitoring data

Si(t) of all kinds of sensors in this part after preprocessing

can be obtained at time t.
BPA calculation based on AWAM and BPNN

AWAM calculates the input data of BPNN

After eliminating the invalid abnormal data, the AWAM is

used to fuse the similar monitoring data of various parts of

the building to provide input data for BPNN calculation.

Different monitoring data have different weights in the

safety evaluation of building components. The AWAM

based on the minimum mean square error theory is used

to solve the weight of each sensor. Multiply the data

received by each sensor by the corresponding weight, and

add the result, which is the input value of BPNN.

Assuming that there are m stress measurement points in

a certain part of the building, and the variance are

σ2
1, σ

2
2, . . . , σ

2
m. Since the sensors are installed in different

locations and have a certain distance, it is approximately con-

sidered that the monitoring data are independent of each

other. Accordingly, the mean square error σ satisfies Equation

(6) (Haq ). The fusion of X̂ and weight should meet

Equation (7), where the effective stress monitoring data is xi
om http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
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and the corresponding weight is wi. When the mean square

error is minimum, the corresponding weight of m stress sen-

sors is shown in Equation (8). In the same way, the fusion

values of other monitoring indicators in this part after eliminat-

ing abnormal values are obtained.

σ2 ¼ E[(x�X)
2
] ¼ E

Xm
i¼1

w2
i (x� xi)

2

" #
¼

Xm
i¼1

w2
i σ

2
i (6)

X̂ ¼
Xm
i¼1

wixi,
Xm
i¼1

wi ¼ 1 (7)

wi ¼ 1

σ2
i

Pm
i¼1

1
σ2
i

(8)
BPNN-enabled BPA

The neural network is a typical model to construct nonlinear

complex relationships (Samadi et al. ). BPNN is cur-

rently the most widely used neural network model, and its

learning process consists of two parts: forward propagation

and back propagation. In the forward propagation process,

the input pattern is passed from the input layer to the

output layer through the processing of hidden layer neurons.

If the desired output cannot be obtained in the output layer,

error back propagation is performed. At this time, the error

signal propagates from the output layer to the input layer,

and the connection weights and thresholds of each layer

are adjusted along the way, so that the error is continuously

reduced until the accuracy requirements are met. The algor-

ithm uses the gradient descent method to make the weight

converge to the minimum point at the fastest speed through

repeated training of multiple samples, and find the mini-

mum value of the error function.

There is a highly nonlinear relationship between the

operational safety state of buildings and multi-sensor data.

According to the requirements of building safety evaluation,

the BP network structure designed in this paper is shown in

Figure 2. It is a three-layer BPNN with a hidden layer.

Where the input vector I¼ [I1, I2,…, In], the number

of input layers n is determined by the type number of

building safety monitoring indicators. The expected

output vector U¼ [U1, U2,…, Uj], the actual output vector



Figure 2 | Structure of BPNN.
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P¼ [P1, P2,…, Pj], the number of output layers j is deter-

mined by the number of building safety evaluation level.

The connection weight between the input layer and

hidden layer is win, and that between the hidden layer and

the output layer is zji. The threshold of each neuron in the

hidden layer is bn, and that of each unit in the output layer

is bi0. The number of neurons in the hidden layer i is deter-

mined by the empirical Equation (9).

i ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ j

p
þ a (9)

where a is the natural number in [1, 10].

In this study, the BPNN is used to locally integrate the

heterogeneous monitoring data of various parts of the build-

ing, and to initially judge the safety status of each part of the

building. The fusion value of each monitoring index

obtained by adaptive weighted average fusion is used as

the feature parameter input of the BPNN. The unipolar sig-

moid function is used in the output layer. The steps of neural

network fusion are as follows:

1. BPNN initialization. Initial values are given to the initia-

lization variables, including the initial random values win

and zji, the thresholds bi, and bj0.

2. The result of AWAM is used as the sample set to train the

neural network. The activation function uses the Sigmoid
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
function, and the calculation equation is as follows (11),

which maps the input range of neurons from

(�∞, þ∞) to (0,1).

f(x) ¼ 1
1þ e�x (10)

3. Calculate the input and output of each neuron in the

hidden layer and the output layer.

4. Reverse calculation of the unit errors of the output layer and

the hidden layer. The calculation equation for the neuron

error of the kth output layer is shown in Equation (16).

δk ¼ (ck � hk)hk(1� hk) (11)

where ck is the expected value of the sample.

5. Update the connection weight zji (Equation (17)) and the

output threshold bi0 (Equation (18)) between the hidden

layer and the output layer according to the weight error δk.

z ji(N þ 1) ¼ wji(N)þ αδkhi (12)

b0i(N þ 1) ¼ b0i(N)þ βδk (13)
6. Update the learning input mode and input times, repeat

steps (2)–(8) until the error and learning times meet the

specified requirements.

The mean square error MSE (Equation (14)) of the test

sample is used to measure the quality of the network per-

formance. The smaller the error value, the better the BP

network fusion result.

MSE ¼ 1
N

XN
i¼1

(y(i)r � y(i)p )
2

(14)

where N is the number of training samples; y(i)r is the actual

output value of the ith sample in the test set; y(i)p is the output

value of the BPNN after the ith sample in the test set has

passed the simulation.

Introducing BD to improve conflict factor

In D-S theory, the hypothesis recognition framework consists

of n independent and complete propositions. Satisfying
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2Θ ! [0, 1],m(∅) ¼ 0, and
Pn

i¼1 m(Ai) ¼ 1,m(A) reflects the

trust degree of evidence to proposition A, which is called the

BPA. If m(A) ≠ 0, A is called a focal element. The BPA of n

evidence in the framework of recognition is m1, m2,…, mn,

then the synthesis rule is as follows (Li et al. ):

(m1 ⊕m2 ⊕ � � �⊕mi)(A) ¼

P
Tn
i¼1

Ai¼A

Qn
i¼1

mi(Ai)

1� k
(15)

k ¼
X

Tn
i¼1

Ai¼∅

Yn
i¼1

mi(Ai) (16)

where k is the conflict factor, and i is the number of focal

elements in the recognition framework Θ.

If the value of k is large, it indicates that the conflict

between the evidence is large. This may cause the fusion

result to be inconsistent with the actual situation, leading to

decision-making errors. In this study, the source of evidence

is improved by introducing BD, and the high conflict evi-

dence is corrected and then combined iteratively using

synthesis rules to improve the accuracy of the fusion results.

In statistics, the Bhattacharyya Distance (BD) is used to

measure two discrete probability distributions. For two dis-

crete probability distributions p and q in the X-number

field, the BD is defined as follows:

BD(p, q) ¼ � ln (BC( p, q)) (17)

where BC(p, q)¼P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(x)q(x)

p
, 0�BC�1 and 0�BD�∞,

BC is called the Bhattacharyya coefficient. According to the

BD, the distance equation of mi and mj and the distance

matrix can be derived as follows:

dBPA(mi, mj) ¼ dij ¼ � ln (BC(mi, mj)) (18)

DM ¼

0 d12 � � � d1n

d21 0 � � � d2n

..

. ..
. . .

. ..
.

dn1 dn2 � � � 0

2
6664

3
7775 (19)

It can be seen from Equation (24) that the matrix is a

symmetric matrix, which is dij¼ dji, and the diagonal

elements are zero.
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The monitoring data of different parts of the building

have a certain impact on the overall safety status of the

building, so there is a certain connection between the evi-

dence of each part layer. Although the conflict factor k

reflects the magnitude of conflict between focal elements,

it does not consider the relationship between evidence.

BD reflects the similarity of the probability distribution of

each focal element among pieces of evidence. This study

makes full use of the complementarity of the above two; a

new expression of conflict factor is combined, as shown in

Equation (25). The new conflict factor k0 is the result of

the combination of conflict factor k and evidence distance

dBPA(mi, mj). When and only if both of them are zero, it

means that there is no conflict between the pieces of evi-

dence, which overcomes the error problem of judging

evidence conflict by a single condition.

k0 ¼ dBPA(mi, mj)þ k
2

(20)
CASE STUDY

Engineering background and evaluation system

The middle route of the south to north water diversion pro-

ject is a long-distance and super large water conservancy

project in China, with a total length of 1,431.98 km and a

total head difference of about 100 m. There are many

kinds of buildings along the project, including cross build-

ings (such as inverted siphon, aqueduct, and highway

bridge) and control buildings (such as sluice, tunnel, and

pump station) and a total of 1,796. The water supply was

officially opened on 12 December 2014, benefiting more

than 60 million people. To ensure the safe operation of the

project, it is necessary to set up appropriate monitoring

items and many measuring points according to the type

and structure of buildings. The safety monitoring items of

water conveyance structures can be divided into deformation,

stress, strain, seepage, and temperature. The corresponding

sensors installed on various buildings include displacement

gauge, earth pressure gauge, strain gauge, osmometer, ther-

mometer, joint gauge, steel bar gauge, water level meter,

etc. The evaluation grade of building safety state is divided
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into three grades: normal (A), abnormal (B), and dangerous

(C). Then, the evaluation is set as ϕ ¼ {A, B, C}.

In this study, the long-term safety monitoring data of an

inverted siphon located in the Henan section of the middle

route of the south to north water diversion project is

selected to evaluate the safety status of diversion buildings.

The safety evaluation system and fusion model established

for the inverted siphon are shown in Figure 3. The building

is divided into five parts, and a, b, c, and d in the figure rep-

resent the number of monitoring points of the same kind of
Figure 3 | Evaluation system and fusion model of inverted siphon.

Table 1 | Type and number of sensors

Part
Entrance
part Entrance lock chamber Pipe body

Index C2 C4 C1 C2 C3 C4 C1 C

Type S2 S4 S1 S2 S3 S4 S1 S

Number 1 4 4 5 7 7 10 1

://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
monitoring indicators on the pipe body. The monitoring

indicators include four types of displacement, earth

pressure, stress, and seepage pressure. The types and quan-

tities of monitoring indicators for different parts of

buildings are different. The specific information of the

sensor layout is shown in Table 1.

This research proposes a three-tier information fusion fra-

mework for the safety evaluation of diversion buildings,

including data-level fusion, feature-level fusion, and decision-

level fusion. The data layer obtains the feature information
Exit lock chamber Exit part

2 C3 C4 C1 C2 C3 C4 C2 C4

2 S3 S4 S1 S2 S3 S4 S2 S4

4 48 8 4 5 7 8 1 3
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by directly fusing the original data monitored by multiple sen-

sors. The feature layer fuses the feature information to obtain

the local judgment result. Finally, the overall safety status of

the building operation is judged by the decision-making

layer. The fusion information and results between different

levels are transferred to other levels through the database,

and the data fusion is realized in this interactive way. Data-

level fusion has the advantages of fusing a large amount of

original data and providing detailed information for feature-

level and decision-level fusion. Feature-level fusion provides

association information for decision-level fusion by analyzing

feature information comprehensively. Decision-level fusion

has the advantages of small sensor dependence, strong anti-

interference ability, and good flexibility.

Accordingly, the multi-source data fusion method pro-

posed in this paper is divided into three steps. The first

step is to use the AWAM for data-level fusion of similar

monitoring data in building parts. The second step is to

use the BPNN for the feature-level fusion of heterogeneous

sensors in the same part of the building. The third step is to

use the D-S theory to fuse the fusion data of different parts of

the building. Through data fusion of multi-type sensor data,

the overall safe operation state of the building is judged.

In this table, C1, C2, C3, and C4 represent displacement,

earth pressure, stress, and seepage pressure, respectively. S1,

S2, S3, and S4 represent sensor joint meter, earth pressure

gauge, reinforcement meter, and osmometer, respectively.

Fusion steps and results

According to the three-level data fusion algorithm proposed

in this paper, the specific steps of the safety state evaluation

of the diversion building are as follows.
Figure 4 | Data-level fusion results of displacement.
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Step 1: data-level fusion

First, the improved support function is introduced to prepro-

cess the data collected by sensors of five parts of the building

to eliminate the invalid outliers with a large deviation.

Second, the AWAM is used to fuse the data of the same

kind of sensors in each part according to Equations (6)–(8).

Figures 4 and 5, respectively, represent the monitoring

data of displacement and stress from 2013 to 2019 after

data preprocessing and data-level fusion. According to

Table 1, these two monitoring indicators only belong to

the entrance lock chamber, pipe body, and exit lock

chamber. Figures 6 and 7, respectively, represent the moni-

toring data of earth pressure and seepage pressure from

2013 to 2019 after data preprocessing and data-level

fusion. These two monitoring indicators are installed in

five parts of an inverted siphon. It can be seen from these

figures that the fusion data of displacement, earth pressure,

and stress changes greatly at the initial stage of building

operation. After 2015, they all change periodically and

stably with the seasonal temperature range, and the vari-

ation range is within the normal range. Before the water

supply, the osmometer value is mainly affected by the

groundwater level. Due to the pumping and drainage work

in the construction site in the early stage, the osmometer

of the building floor is basically in the state of no water,

and the change of seepage pressure is very small. After the

water was officially filled on 12 December 2014, the seepage

pressure at each measuring point of the inverted siphon

showed an increasing trend. Among them, the seepage

pressure of the pipe body section is larger, reaching the

maximum value in the flood season of 2015. It can be

seen that the inverted siphon is affected by groundwater in



Figure 6 | Data-level fusion results of earth pressure.

Figure 7 | Data-level fusion results of seepage pressure.

Figure 5 | Data-level fusion results of stress data.
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the flood season. From the changing trend of measured

values, most of the measured values are normal, so it can

be judged that the project is in a safe operating state.
://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
Therefore, the long-term operation trend of each building

can be preliminarily judged according to the data-level

fusion results.



Table 3 | BPNN structure design of building part layer

Part
Entrance
part

Entrance lock
chamber

Pipe
body

Exit lock
chamber Exit part

Number of
input layers

2 4 4 4 2

Number of
hidden layers

10 6 6 9 6

Number of
output layers

3 3 3 3 3

Table 2 | BPNN output layer definition

Building safety level Normal Abnormal Dangerous

Output results (0,0,1) (0,1,0) (1,0,0)
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Step 2: feature-level fusion

Before constructing the BPNN, the number of neurons in

the input layer must be determined. Each part of the build-

ing partition in this study is equivalent to a sub-neural

network. The data-level fusion results of different sensors

in different parts are used as the input of the neural network.

The number of neurons in the input layer is equal to the

number of sensor types contained in each part. Taking the

entrance part as an example, as can be seen from Table 1

that there are two kinds of sensors in this part: earth

pressure gauge and osmometer, so the number of input

layers is two. Similarly, the number of neurons in the

input layer of other buildings can be obtained as shown in

Table 3. Since the different data collected by different sen-

sors, the larger input data will play a greater role in

simultaneous interpreting and lead to longer training time.

Therefore, it is necessary to normalize the training data to

the interval [0, 1].

The number of neurons in the hidden layer is calculated

by the empirical Equation (9) listed in the ‘Identify abnormal

data’ section. The number of neurons with the minimum

error is selected as the number of hidden layer neurons cor-

responding to each sub-neural network. Figure 8 shows the

change ofMSEwith the number of hidden layers.MSE takes

the average value of 10 training times of each sub-neural net-

work. In the case of the minimum error, the number of

hidden layer neurons corresponding to the entrance part,

entrance lock chamber, pipe body, exit lock chamber, and

exit part is shown in Table 3.

The number of neurons in the output layer is determined

according to the number of building safety evaluation level.

According to the evaluation set as ϕ ¼ {A, B, C}, the number

of output layer neurons of the BPNN is set to 3. In this study,
Figure 8 | Different numbers of neurons and errors in the hidden layer.
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the output of the BPNN is defined by binary. The definition

of the output is shown in Table 2.

In this study, the BPNN is used to fuse heterogeneous

sensor data in different regions. MATLAB education version

2019b software was used to build and train the BPNN

model. A three-layer BPNN is designed as the feature-level

data fusion algorithm, that is, the number of hidden layers

is 1. The number of each layer of the neural network is deter-

mined according to Table 3.

The transfer function of the hidden layer neuron of the

neural network uses tansig(). Since the output is limited to

(0, 1), the transfer function of output layer neurons uses

logsig(). The Levenberg Marquardt algorithm with the fast-

est convergence speed, namely the traimlm() function is

used to train the neural network. The sample sizes of the

training set and test set for each sub-neural network are

determined by the sampling frequency, data type, and pre-

processing results in 2013–2019. The number of samples
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and feature-level fusion results contained in different parts

are shown in Table 4.
Step 3: decision-level fusion

The recognition framework is composed of a building safety

state evaluation set as ϕ ¼ {A, B, C}. The fusion results of the

BPNN in step 2 are normalized to provide an initial m value

for D-S evidence theory. Equations (15)–(20) are used to

evaluate the overall safety status of buildings. The evidence

BPA and fusion results corresponding to the five parts are

shown in Table 5. After the fusion of decision level, the

BPA of the whole building in the normal condition is far

greater than that of abnormal BPA, which is consistent

with the actual operation state. It can be seen that data

fusion based on D-S theory can eliminate the uncertainty
Table 4 | Feature-level fusion results of building BPNN

Part Entrance part
Entrance lock
chamber

Number of training sets 210 280

Number of test sets 90 98

Fusion results (0.1138, 0.2437,
0.6495)

(0.0629, 0.3510,
0.5860)

Table 5 | Evaluation results of each part and the whole building

Evaluation level Entrance part Entrance lock chamber Pi

Dangerous 0.113 0.063 0

Abnormal 0.242 0.351 0

Normal 0.645 0.586 0

Figure 9 | Monitoring result process line of the earth pressure gauge in the entrance lock cha

://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
of building evaluation and improve the accuracy of evalu-

ation results.
Results analysis

Data preprocessing is an indispensable step before the safety

evaluation of the whole building structure using data fusion

technology. Figure 9 shows the stress monitoring data pro-

cess line of three earth pressure gauges (Ej-1, Ej-2, Ej-3)

from 2013 to 2019 in the entrance lock chamber. It can be

seen that due to the interference of external factors, the

monitoring data of the three soil pressure sensors will

have varying degrees of fluctuations and sharp angles

within a certain period of time. If these data are directly

fused without preprocessing, the result is shown as the

blue line in Figure 10. The data change process fluctuates
Pipe body Exit lock chamber Exit part

230 230 228

100 99 98

(0.0460, 0.5390,
0.4150)

(0.2740, 0.1290,
0.5970)

(0.1710, 0.2730,
0.5560)

pe body Exit lock chamber Exit part Building safety

.046 0.274 0.171 0.00

.539 0.129 0.273 0.01

.415 0.597 0.556 0.99

mber.



Figure 10 | Comparison of fusion results before and after preprocessing. Please refer to the online version of this paper to see this figure in color: https://doi.org/10.2166/hydro.2021.154.

262 S. Zhang et al. | Multi-source data fusion method for structural safety assessment Journal of Hydroinformatics | 23.2 | 2021

Downloaded fr
by guest
on 25 April 202
greatly, which does not conform to the actual change law.

After eliminating invalid outliers, the data-level fusion

results are shown in the red line in Figure 10, and the

fusion results tend to be periodic and stable. Combined

with the temperature change line in Figure 10, it can be

seen that the current stress changes periodically with temp-

erature. As the temperature increases, the stress changes in

the compression direction, and as the temperature

decreases, the stress changes in the tensile direction. There-

fore, the improved self-support algorithm introduced in this

paper can eliminate uncertain data and improve the accu-

racy of data fusion.

To verify the effectiveness of the hybrid fusion algorithm

proposed in this paper, taking the monitoring data of the
Figure 12 | Monitoring data and fusion data after removing abnormal values.

Figure 11 | Monitoring data and fusion data of osmometer at the entrance part.
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entrance part of the inverted siphon as an example, the

AWAM is used to fuse the monitoring data within the same

monitoring period. Figure 11 shows the trend of seepage

pressure monitoring data and fusion data at the entrance sec-

tion of buildings. Figure 12 shows the changing trend of

monitoring data and fusion data after eliminating large fluctu-

ation data. It can be seen from the figure that although the

individual data collected at the measuring point Pa-1 fluctu-

ates greatly due to external factors, the fluctuating data has

little effect on the fusion result. The results show that the

use of the AWAM for data fusion can effectively improve

the accuracy of building safety evaluation monitoring data.

Then, according to the five evidence sources in Table 5,

the traditional D-S evidence theory and the algorithm

https://doi.org/10.2166/hydro.2021.154
https://doi.org/10.2166/hydro.2021.154


263 S. Zhang et al. | Multi-source data fusion method for structural safety assessment Journal of Hydroinformatics | 23.2 | 2021

Downloaded from http
by guest
on 25 April 2024
proposed in this paper are used to evaluate the overall safety

status of buildings. The evaluation results are shown in

Table 6. The results show that the fusion results of the two

algorithms all point to A level, that is, the inverted siphon

building is in a normal operation state. Therefore, the BPA

value of A-grade evaluated by the algorithm in this paper

is obviously better than the traditional D-S evidence

theory in the case of different fusion parameters, which

proves that the Improved D-S fusion algorithm is more accu-

rate. After improving the conflict factor, the probability

accumulation of evidence is more obvious than the tra-

ditional D-S theory, and it is feasible to use the BPNN to

solve BPA.

Finally, the AWAM, BPNN, D-S evidence theory, and

the algorithm in this paper are used for data fusion. The

comparison of fusion results and MSE is shown in

Table 7. It can be concluded that the MSE using the three

algorithms alone is much larger than the algorithm in this

paper. Compared with the traditional D-S theory, this algor-

ithm reduces the MSE from 0.18 to 0.01%. Therefore, it is

proved that the three-level fusion model designed in this

paper improves the accuracy of the system. The results

show that the result of the multi-sensor hybrid fusion algor-

ithm is more in line with the actual situation.
Table 6 | Comparison of fusion results of different parameters

Algorithm
Evaluation
level ⊕2

i¼1mi0 ⊕3
i¼1mi0 ⊕4

i¼1mi0 ⊕5
i¼1mi0

D-S evidence
theory

C 0.015 0.002 0.001 0.000
B 0.181 0.226 0.059 0.030
A 0.804 0.773 0.940 0.970

The algorithm
proposed in this
paper

C 0.026 0.002 0.001 0.000
B 0.116 0.089 0.017 0.006
A 0.857 0.910 0.982 0.994

Table 7 | Fusion results and error comparison table

Algorithm

Adaptive
weighted
averaging BPNN

D-S evidence
theory

The algorithm
proposed in
this paper

Results (0.066, 0.252,
0.682)

(0.027,
0.221,
0.752)

(0.000,
0.030,
0.970)

(0.000, 0.006,
0.994)

MSE 0.1690 0.1111 0.0018 0.0001

://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
In multi-objective decision analysis, decision makers

need to know the impact of the change of decision-making

information on the final decision-making results. Therefore,

this study analyzes the sensitivity of the BPA value of differ-

ent parts of the building on the overall safety state of the

building. In practice, the building safety management per-

sonnel will focus on the parts with evaluation level C, that

is, the dangerous parts. So this study focuses on the analysis

of the impact on the overall safety state of the building when

the BPA of grade C in each part of the building changes

slightly. The change range of BPA of grade C in each part

of the building is δA. To ensure the sum of the BPA value

of each part is 1, the changed value is added to the BPA

of level A of the building, which is opposite to level C. In

this study, the sensitivity coefficient E was used to evaluate

the sensitivity of each factor to the fusion results. The higher

the sensitivity coefficient, the higher the sensitivity. The cal-

culation formula is shown in the following formula. The

data before the change are shown in Table 5, and the results

of sensitivity analysis are shown in Table 8.

E ¼ ΔA
ΔF

(21)

where ΔF is the change rate of each factor, and the value in

this study is ΔF. ΔA represents the change rate of the corre-

sponding evaluation grade when factor F changes ΔF.

The results of the sensitivity analysis show that the

entrance part of the inverted siphon has the highest
Table 8 | Sensitivity analysis results

Sensitivity coefficient EA EB EC

P1þ 10% � 0.0030 0.4516 1.3016

P2þ 10% � 0.0004 0.0449 0.9800

P3þ 10% � 0.0002 0.0067 1.0074

P4þ 10% � 0.0016 0.2369 1.2606

P5þ 10% � 0.0008 0.0953 1.1048

P1� 10% � 0.0015 0.2163 1.1948

P2� 10% � 0.0004 0.0415 0.9858

P3� 10% � 0.0002 0.0029 1.0026

P4� 10% � 0.0006 0.0789 0.9118

P5� 10% � 0.0007 0.0890 1.0801
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sensitivity to the overall safety evaluation of buildings.

Therefore, the monitoring of the entrance section should

be strengthened. The influence degree of the overall safety

state of buildings in other parts is similar, which indicates

that the overall safety state of inverted siphon depends on

the comprehensive results of multiple indexes of multiple

parts. Therefore, the multi-source data fusion method pro-

posed in this paper is sensible and reliable.

In this table, P1, P2, P3, P4, and P5 represent the

entrance part, entrance lock chamber, pipe body, exit lock,

and exit part, respectively. P1þ 10% means that the BPA

value of level C increases by 10% and that of level A

decreases by 10%. P1� 10% indicates that the BPA value

of grade C decreases by 10% and the BPA value of level A

increases by 10%. The meaning of other indicators is the

same. EA, EB, and EC represent the sensitivity coefficients

of A, B, and C in the final fusion results.
CONCLUSIONS

With the development of information technology, a large

number of multi-source heterogeneous data is generated

every day during the operation of the project. Building

safety evaluation based on single sensor data has low

reliability and high uncertainty. Therefore, how to use

these real-time data to evaluate the safety status of building

structures is a challenging problem. This paper proposes a

multi-source data fusion method based on Improved D-S

and BPNN. In practical application, a three-level data

fusion model based on the data level, feature level, and

decision level is established according to the structural

characteristics of water diversion structures to comprehen-

sively evaluate the structural safety status. The results

show that: (1) By introducing the improved support function

to preprocess the original data, the invalid abnormal data

collected due to sensor fault can be eliminated, and the

accuracy of subsequent data fusion can be improved. (2)

Data-level fusion based on the AWAM can effectively

reduce the impact of large fluctuation data on evaluation

results, improve the accuracy of monitoring data, and pro-

vide the input value for the neural network. (3) Taking the

output of neural network as the evidence input of evidence

theory can solve the problem that evidence is difficult to
om http://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2021.154/858933/jh2021154.pdf
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obtain in the evidence theory fusion method and realize

the local safety state evaluation of buildings. (4) By introdu-

cing BD to measure the distance between different evidence,

the Improved D-S solves the conflict between evidence.

Compared with the results of traditional D-S evidence

theory, this method improves the accuracy of building over-

all safety state evaluation.

Compared with the single fusion method, the MSE of

the hybrid data fusion method proposed in this paper is

smaller, which proves that this method is an effective

method for building safety evaluation. Therefore, it is feas-

ible to evaluate the safety status of buildings through multi-

level data fusion to ensure the safe operation of the project

under the condition of a large building range and a large

amount of monitoring data. In the follow-up research, we

will consider how to combine sensor monitoring data and

inspection text data to evaluate the safety status of buildings

more accurately. In addition, with the development of Inter-

net-of-things technology and the continuous operation of the

project, the type and quantity of sensor data will continue to

increase, forming a large amount of multi-source big data.

Therefore, how to combine cloud computing and big data

analysis and other advanced technologies to process these

massive multi-source data and make a more scientific and

accurate assessment of the building safety situation is also

the research focus in the next stage.
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