The increasing demand for uncertainty assessment in streamflow forecasts has drawn the hydrological community's interest toward ensemble forecasting techniques. The widespread deterministic hydrological forecasting point of view focuses to a great extent on the search for a hydrological model that would come as close as possible to “perfection” (i.e. the aim is to implement a model that produces a point forecast that is as close as possible as the observed outcome). On the other hand, ensemble forecasting departs from the deterministic point of view by avoiding the assumption that the “perfect” model exists and instead focuses on issuing a type of forecast that accounts explicitly for the uncertainty inherent to the forecasting process as a whole. In this paper, one-day-ahead hydrological ensemble forecasts obtained by stacked neural networks are presented and analysed. To do so, three simple performance assessment criteria are presented. Those criteria were originally developed in the meteorological and statistical communities to accommodate the need for a quality assessment methodology that is coherent with the probabilistic nature of ensemble weather forecasts. It will be shown that, even though the ensemble forecasts suffer from underdispersion, they outperform point forecasts.
Skip Nav Destination
Article navigation
Research Article|
July 01 2009
Tools for the assessment of hydrological ensemble forecasts obtained by neural networks
Marie-Amélie Boucher;
1Department of Civil Engineering, Université Laval, Pavillon Adrien Pouliot, 1065 avenue de la Médecine, Québec G1V 0A6, Canada
Tel.: +1 418 656 2131X8727; E-mail: [email protected]
Search for other works by this author on:
Luc Perreault;
Luc Perreault
2Hydro-Quebec, IREQ, Varennes J3X 1S1, Canada
Search for other works by this author on:
François Anctil
François Anctil
1Department of Civil Engineering, Université Laval, Pavillon Adrien Pouliot, 1065 avenue de la Médecine, Québec G1V 0A6, Canada
Search for other works by this author on:
Journal of Hydroinformatics (2009) 11 (3-4): 297–307.
Article history
Received:
April 30 2008
Accepted:
September 11 2008
Citation
Marie-Amélie Boucher, Luc Perreault, François Anctil; Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. Journal of Hydroinformatics 1 July 2009; 11 (3-4): 297–307. doi: https://doi.org/10.2166/hydro.2009.037
Download citation file: