Urban water demand is a complex function of socio-economic characteristics, climatic factors and public water policies and strategies. Therefore a combination model is developed based on the multivariate econometric approach which considers these parameters to forecast and manage the urban annual water demand. Firstly, the factors correlative with water demand are selected, then the trend and cyclical components of the factors are calculated by the Hodrick–Prescott (HP) filter method. The multiple linear regression method is applied to simulate the trend components and the fuzzy neural network is built based on the cyclical components, and then the two models are combined to forecast the urban annual water demand. In order to illuminate the model, it is used to forecast the annual water demand of Dalian against actual data records from 1980 to 2007. By comparing with the traditional methods, the preferable model accuracy demonstrates the effectiveness of the fuzzy neural network and multiple linear regression based on the HP filter in forecasting urban annual water demand. After model testing, the sensitivities of the influence factors in the model are analyzed. The results show the model is reliable and feasible, and it also helps to make predictions with less than 10% relative error.
Skip Nav Destination
Article navigation
Research Article|
November 21 2009
Urban water demand forecasting based on HP filter and fuzzy neural network
Wu Li;
1School of Civil and Hydraulic Engineering, Institute of Water Resources and Flood Control, Dalian University of Technology, 2 Linggong Road, Ganjinzi District, Dalian City Liaoning Province, 116024, China
Fax: +86 0411 8470 8517; E-mail: [email protected]
Search for other works by this author on:
Zhou Huicheng
Zhou Huicheng
1School of Civil and Hydraulic Engineering, Institute of Water Resources and Flood Control, Dalian University of Technology, 2 Linggong Road, Ganjinzi District, Dalian City Liaoning Province, 116024, China
Search for other works by this author on:
Journal of Hydroinformatics (2010) 12 (2): 172–184.
Article history
Received:
November 14 2008
Accepted:
March 03 2009
Citation
Wu Li, Zhou Huicheng; Urban water demand forecasting based on HP filter and fuzzy neural network. Journal of Hydroinformatics 1 March 2010; 12 (2): 172–184. doi: https://doi.org/10.2166/hydro.2009.082
Download citation file: