Scour around pile groups is rather complicated and not yet fully understood due to the fact that it arises from the triple interaction of fluid–structure–seabed. In this study, two data mining approaches, i.e. Support Vector Machines (SVM) and Artificial Neural Networks (ANN), were applied to estimate the wave-induced scour depth around pile groups. To consider various arrangements of pile groups in the development of the models, datasets collected in the field and laboratory studies were used and arrangement parameters were considered in the models. Several non-dimensional controlling parameters, including the Keulegan–Carpenter number, pile Reynolds number, Shield's parameter, sediment number, gap to diameter ratio and number of piles were used as the inputs. Performances of the developed SVM and ANN models were compared with those of existing empirical methods. Results indicate that the data mining approaches used outperform empirical methods in terms of accuracy. They also indicate that SVM will provide a better estimation of scour depth than ANN (back-propagation/multi-layer perceptron). Sensitivity analysis was also carried out to investigate the relative importance of non-dimensional parameters. It was found that the Keulegan–Carpenter number and gap to diameter ratio have the greatest effect on the equilibrium scour depth around pile groups.
Skip Nav Destination
Article navigation
Research Article|
November 09 2010
Prediction of pile group scour in waves using support vector machines and ANN
Samaneh Ghazanfari-Hashemi;
Samaneh Ghazanfari-Hashemi
1Enviro-hydroinformatics COE, School of Civil Engineering, Iran University of Science and Technology, PO Box 16765-163, Narmak, Tehran, Iran
Search for other works by this author on:
Amir Etemad-Shahidi;
1Enviro-hydroinformatics COE, School of Civil Engineering, Iran University of Science and Technology, PO Box 16765-163, Narmak, Tehran, Iran
E-mail: [email protected]
Search for other works by this author on:
Mohammad H. Kazeminezhad;
Mohammad H. Kazeminezhad
1Enviro-hydroinformatics COE, School of Civil Engineering, Iran University of Science and Technology, PO Box 16765-163, Narmak, Tehran, Iran
Search for other works by this author on:
Amir Reza Mansoori
Amir Reza Mansoori
1Enviro-hydroinformatics COE, School of Civil Engineering, Iran University of Science and Technology, PO Box 16765-163, Narmak, Tehran, Iran
Search for other works by this author on:
Journal of Hydroinformatics (2011) 13 (4): 609–620.
Article history
Received:
December 02 2009
Accepted:
June 01 2010
Citation
Samaneh Ghazanfari-Hashemi, Amir Etemad-Shahidi, Mohammad H. Kazeminezhad, Amir Reza Mansoori; Prediction of pile group scour in waves using support vector machines and ANN. Journal of Hydroinformatics 1 October 2011; 13 (4): 609–620. doi: https://doi.org/10.2166/hydro.2010.107
Download citation file: