The prediction of pipe failures in water distribution systems is an essential planning tool for water companies. Previous methods focus on the prediction of either future failure numbers or aspects of pipe condition. However, most of these only predict at the level of large pipe groups (of similar characteristics) and often cannot provide uncertainty bounds. Here, a new statistical method is developed to predict the probability of failure at the single pipe level. The method extends the Non-Homogeneous Poisson Process (NHPP) in two ways: firstly, it incorporates pipe-specific random effects to account for unmeasured information on the factors affecting the pipe failures. Secondly, the method explicitly accounts for zero inflation, that is the possibility that more zero failures occur than expected from a simple Poisson assumption. This zero-inflated NHPP (ZINHPP) model was applied to two real-life datasets, one from North America and one from New Zealand. The results clearly demonstrate improved prediction capability, especially in the New Zealand data, which contain a much larger percentage of pipes with zero failures.
Skip Nav Destination
Article navigation
Research Article|
June 12 2012
On the prediction of underground water pipe failures: zero inflation and pipe-specific effects
Theodoros Economou;
1College of Engineering, Mathematics and Physical Sciences, North Park Road, Exeter EX4 4QF, UK
E-mail: [email protected]
Search for other works by this author on:
Zoran Kapelan;
Zoran Kapelan
1College of Engineering, Mathematics and Physical Sciences, North Park Road, Exeter EX4 4QF, UK
Search for other works by this author on:
Trevor C. Bailey
Trevor C. Bailey
1College of Engineering, Mathematics and Physical Sciences, North Park Road, Exeter EX4 4QF, UK
Search for other works by this author on:
Journal of Hydroinformatics (2012) 14 (4): 872–883.
Article history
Received:
November 23 2010
Accepted:
February 02 2012
Citation
Theodoros Economou, Zoran Kapelan, Trevor C. Bailey; On the prediction of underground water pipe failures: zero inflation and pipe-specific effects. Journal of Hydroinformatics 1 October 2012; 14 (4): 872–883. doi: https://doi.org/10.2166/hydro.2012.144
Download citation file: